精英家教网 > 初中数学 > 题目详情
12.在等腰直角三角形ABC中,∠ACB=90°,AC=3,点P为边BC的三等分点,连接AP,则AP的长为$\sqrt{13}$或$\sqrt{10}$.

分析 ①如图1根据已知条件得到PB=$\frac{1}{3}$BC=1,根据勾股定理即可得到结论;
②如图2,根据已知条件得到PC=$\frac{1}{3}$BC=1,根据勾股定理即可得到结论.

解答 解:①如图1,∵∠ACB=90°,AC=BC=3,
∵PB=$\frac{1}{3}$BC=1,
∴CP=2,
∴AP=$\sqrt{A{C}^{2}+P{C}^{2}}$=$\sqrt{13}$,
②如图2,∵∠ACB=90°,AC=BC=3,
∵PC=$\frac{1}{3}$BC=1,
∴AP=$\sqrt{A{C}^{2}+P{C}^{2}}$=$\sqrt{10}$,
综上所述:AP的长为$\sqrt{13}$或$\sqrt{10}$,
故答案为:$\sqrt{13}$或$\sqrt{10}$.

点评 本题考查了等腰直角三角形的性质,勾股定理,熟练掌握等腰直角三角形的性质是解题的关键.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:填空题

2.已知反比例函数y=$\frac{k}{x}$的图象经过点(2,-1),则k=-2.

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

3.下列结论错误的是(  )
A.对角线相等的菱形是正方形
B.对角线互相垂直的矩形是正方形
C.对角线互相垂直且相等的四边形是正方形
D.对角线互相垂直且相等的平行四边形是正方形

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

20.阅读下面材料:
在数学课上,老师请同学思考如下问题:如图1,我们把一个四边形ABCD的四边中点E,F,G,H依次连接起来得到的四边形EFGH是平行四边形吗?
小敏在思考问题是,有如下思路:连接AC.

结合小敏的思路作答
(1)若只改变图1中四边形ABCD的形状(如图2),则四边形EFGH还是平行四边形吗?说明理由;参考小敏思考问题方法解决以下问题:
(2)如图2,在(1)的条件下,若连接AC,BD.
①当AC与BD满足什么条件时,四边形EFGH是菱形,写出结论并证明;
②当AC与BD满足什么条件时,四边形EFGH是矩形,直接写出结论.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

7.如图,AB为⊙O的直径,点E在⊙O上,C为$\widehat{BE}$的中点,过点C作直线CD⊥AE于D,连接AC、BC.
(1)试判断直线CD与⊙O的位置关系,并说明理由;
(2)若AD=2,AC=$\sqrt{6}$,求AB的长.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

17.如图1,抛物线y=ax2-6x+c与x轴交于点A(-5,0)、B(-1,0),与y轴交于点C(0,-5),点P是抛物线上的动点,连接PA、PC,PC与x轴交于点D.
(1)求该抛物线所对应的函数解析式;
(2)若点P的坐标为(-2,3),请求出此时△APC的面积;
(3)过点P作y轴的平行线交x轴于点H,交直线AC于点E,如图2.
①若∠APE=∠CPE,求证:$\frac{AE}{EC}=\frac{3}{7}$;
②△APE能否为等腰三角形?若能,请求出此时点P的坐标;若不能,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

4.请从以下两个小题中任选一个作答,若多选,则按第一题计分.
A.一个多边形的一个外角为45°,则这个正多边形的边数是8.
B.运用科学计算器计算:3$\sqrt{17}$sin73°52′≈11.9.(结果精确到0.1)

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

1.为增强学生体质,各学校普遍开展了阳光体育活动,某校为了解全校1000名学生每周课外体育活动时间的情况,随机调查了其中的50名学生,对这50名学生每周课外体育活动时间x(单位:小时)进行了统计.根据所得数据绘制了一幅不完整的统计图,并知道每周课外体育活动时间在6≤x<8小时的学生人数占24%.根据以上信息及统计图解答下列问题:
(1)本次调查属于抽样调查,样本容量是50;
(2)请补全频数分布直方图中空缺的部分;
(3)求这50名学生每周课外体育活动时间的平均数;
(4)估计全校学生每周课外体育活动时间不少于6小时的人数.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

2.周末,小芳骑自行车从家出发到野外郊游,从家出发0.5小时到达甲地,游玩一段时间后按原速前往乙地,小芳离家1小时20分钟后,妈妈驾车沿相同路线前往乙地,行驶10分钟时,恰好经过甲地,如图是她们距乙地的路程y(km)与小芳离家时间x(h)的函数图象.
(1)小芳骑车的速度为20km/h,H点坐标($\frac{3}{2}$,20).
(2)小芳从家出发多少小时后被妈妈追上?此时距家的路程多远?
(3)相遇后,妈妈载上小芳和自行车同时到达乙地(彼此交流时间忽略不计),求小芳比预计时间早几分钟到达乙地?

查看答案和解析>>

同步练习册答案