精英家教网 > 初中数学 > 题目详情

在平面直角坐标系xOy中,已知抛物线 经过(2,1)和(6,-5)两点.

(1)求抛物线的解析式;
(2)设此抛物线与x轴交于AB两点(点A在点B的左侧),与y轴交于C点,点P是在直线右侧的此抛物线上一点,过点PPM轴,垂足为M. 若以APM为顶点的三角形与△OCB相似,求点P的坐标;
(3)点E是直线BC上的一点,点F是平面内的一点,若要使以点OBEF为顶点的四边形是菱形,请直接写出点F的坐标.

(1)抛物线的解析式为
(2)点P的坐标为(8,-14)或(5,-2)
(3)点F的坐标为(,)或(,)或(,)或(2,1)

解析试题分析:(1)由题意,得 
解这个方程组,得    ∴ 抛物线的解析式为.
(2)令,得.解这个方程,得.∴A(1,0),B(4,0),令,得.∴C(0,-2),设P),因为,①当时,△OCB∽△MAP.∴,解这个方程,得(舍),∴点P的坐标为(8,-14)②当时,△OCB∽△MPA.∴,解这个方程,得(舍).∴点P的坐标为(5,-2),∴点P的坐标为(8,-14)或(5,-2)
(3)先由确定点E的几个位置,再由E点确定F点的位置,推出点F的坐标为(,)或(,)或(,)或(2,1)
考点:抛物线解析式的复原,抛物线与集合的简单结合
点评:本题难度一般,学生可以通过方程组的简单计算,求出函数解析式

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

13、在平面直角坐标系xOy中,已知点A(2,-2),在y轴上确定点P,使△AOP为等腰三角形,则符合条件的有
4
个.

查看答案和解析>>

科目:初中数学 来源: 题型:

在平面直角坐标系xOy中,已知抛物线y=ax2+bx+c的对称轴是x=1,并且经过(-2,-5)和(5,-12)两点.
(1)求此抛物线的解析式;
(2)设此抛物线与x轴交于A、B两点(点A在点B的左侧),与y轴交于C 点,D是线段BC上一点(不与点B、C重合),若以B、O、D为顶点的三角形与△BAC相似,求点D的坐标;
(3)点P在y轴上,点M在此抛物线上,若要使以点P、M、A、B为顶点的四边形是平行四边形,请你直接写出点M的坐标.

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网如图,在平面直角坐标系xOy中,△ABC的A、B两个顶点在x轴上,顶点C在y轴的负半轴上.已知|OA|:|OB|=1:5,|OB|=|OC|,△ABC的面积S△ABC=15,抛物线y=ax2+bx+c(a≠0)经过A、B、C三点.
(1)求此抛物线的函数表达式;
(2)设E是y轴右侧抛物线上异于点B的一个动点,过点E作x轴的平行线交抛物线于另一点F,过点F作FG垂直于x轴于点G,再过点E作EH垂直于x轴于点H,得到矩形EFGH.则在点E的运动过程中,当矩形EFGH为正方形时,求出该正方形的边长;
(3)在抛物线上是否存在异于B、C的点M,使△MBC中BC边上的高为7
2
?若存在,求出点M的坐标;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

在平面直角坐标系xOy中,已知A(2,-2),B(0,-2),在坐标平面中确定点P,使△AOP与△AOB相似,则符合条件的点P共有
5
5
个.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,在平面直角坐标系xOy中,A(2,1)、B(4,1)、C(1,3).与△ABC与△ABD全等,则点D坐标为
(1,-1),(5,3)或(5,-1)
(1,-1),(5,3)或(5,-1)

查看答案和解析>>

同步练习册答案