分析 (1)连接AD并延长,根据三角形的外角和内角关系解答;
(2)①利用(1)的结论,直接计算出∠ABX+∠ACX的度数;
②图(3)利用(1)的结论,根据∠BDC=135°,∠BG1C=67°,计算出相等的角:∠DBG4+∠DCG4的和,再次利用(1)的结论,求出∠A的度数.
解答 解:(1)∠BDC=∠A+∠B+∠C.理由:
连接AD并延长到M.
因为∠BDM=∠BAD+∠B,∠CDM=∠CAD+∠C,
所以∠BDM+∠CDM=∠BAD+∠B+∠CAD+∠C,
即∠BDC=∠BAC+∠B+∠C.
(2)①由(1)知:∠BXC=∠A+∠ABX+∠ACX,
由于∠BXC=90°,∠A=50°
所以∠ABX+∠ACX
=∠BXC-∠A
=90°-50°
=40°.
②在箭头图G1BDC中
因为∠BDC=∠G1+∠G1BD+∠G1CD,
又∵∠BDC=135°,∠BG1C=67°
∵∠ABD,∠ACD的五等分线分别相交于点G1、G2、G3、G4
∴4(∠DBG4+∠DCG4)=135°-67°
∴∠DBG4+∠DCG4=17°.
∴∠ABG1+∠ACG1=17°
∵在箭头图G1BAC中
∵∠BG1C=∠A+∠G1BA+∠G1CA,
又∵∠BG1C=67°,
∴∠A=50°.
答:∠A的度数是50°.
点评 本题考查了外角和内角的关系以及角的计算.找出“箭头图”并利用“箭头图”间角的关系是解决本题的关键
科目:初中数学 来源: 题型:选择题
A. | 200元 | B. | 144元 | C. | 300元 | D. | 360元 |
查看答案和解析>>
科目:初中数学 来源: 题型:选择题
A. | y=2x-1 | B. | y=-$\frac{1}{x}$ | C. | y=x-x2 | D. | y=$\frac{1}{{x}^{2}}$+x |
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com