精英家教网 > 初中数学 > 题目详情

【题目】如图,线段 AB4M AB 的中点,动点 P 到点 M 的距离是 1,连接 PB,线段

PB 绕点 P 逆时针旋转 90°得到线段 PC,连接 AC,则线段 AC 长度的最大值是_________

【答案】3

【解析】

以O为坐标原点建立坐标系,过点C作CDy轴,垂足为D,过点P作PEDC,垂足为E,延长EP交x轴于点F,设点P的坐标为(x,y),根据题意动点 P 到点 M 的距离是 1,在0PF中利用勾股定理得x2+y2=1.然后证明ECP≌△FPB,由全等三角形的性质得到EC=PF=y,FB=EP=2-x,从而得到点C(x+y,y+2-x),最后依据两点间的距离公式可求得AC=,最后,依据当y=1时,AC有最大值求解即可.

解:如图所示:过点C作CDy轴,垂足为D,过点P作PEDC,垂足为E,延长EP交x轴于点F.

AB=4,O为AB的中点,
A(-2,0),B(2,0).
设点P的坐标为(x,y),则x2+y2=1.
∵∠EPC+BPF=90°,EPC+ECP=90°,
∴∠ECP=FPB.
由旋转的性质可知:PC=PB.
ECP和FPB中,


∴△ECP≌△FPB.
EC=PF=y,FB=EP=2-x.
C(x+y,y+2-x).
AB=4,O为AB的中点,
AC==

x2+y2=1,
AC=

-1≤y≤1,
当y=1时,AC有最大值,AC的最大值为=3
故答案为:3

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图,在平面直角坐标系xOy中,有一个由六个边长为1的正方形组成的图案,其中点AB的坐标分别为(3,5)(6,1).若过原点的直线l将这个图案分成面积相等的两部分,则直线l的函数解析式为_____

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】在研究相似问题时,甲、乙同学的观点如下:

甲:将边长为345的三角形按图1的方式向外扩张,得到新三角形,它们的对应边间距为1,则新三角形与原三角形相似.

乙:将邻边为35的矩形按图2的方式向外扩张,得到新的矩形,它们的对应边间距均为1,则新矩形与原矩形不相似.

对于两人的观点,下列说法正确的是( )

A. 两人都对 B. 两人都不对 C. 甲对,乙不对 D. 甲不对,乙对

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在 ABCD 中,AEBF 分别平分∠DAB 和∠ABC,交 CD 于点 EFAEBF 相交于点 M

(1)求证:AEBF

(2)判断线段 DF CE 的大小关系,并予以证明.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】下列说法正确的是( )

A. “任意画一个三角形,其内角和为”是随机事件;

B. 某种彩票的中奖率是,说明每买100张彩票,一定有1张中奖;

C. “篮球队员在罚球线上投篮一次,投中”为随机事件;

D. 投掷一枚质地均匀的硬币100次,正面向上的次数一定是50次.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知:如图,在ABC中,AB=AC,以BC为直径的半圆O与边AB相交于点D,切线DEAC,垂足为点E

求证:(1)ABC是等边三角形;

(2)

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】阅读下面的解题过程,解答后面的问题:

如图,在平面直角坐标系中, 为线段的中点,求点的坐标;

解:分别过轴的平行线,过轴的平行线,两组平行线的交点如图所示,设,则

由图可知:

线段的中点的坐标为

(应用新知)

利用你阅读获得的新知解答下面的问题:

(1)已知,则线段的中点坐标为

(2)平行四边形中,点的坐标分别为,利用中点坐标公式求点的坐标。

(3)如图,点在函数的图象上, 轴上,在函数的图象上 ,以四个点为顶点,且以为一边构成平行四边形,直接写出所有满足条件的点坐标。

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】我们知道,把直线y=x向左平移1个单位可得到一次函数y=x+1的图象,把直线y=kx(k≠0)向左平移1个单位可得到一次函数y=k(x+1)的图象,把抛物线y=ax2(a≠0)向左平移1个单位,可得到二次函数y=a(x+1)2的图象.类似的:我们将函数y=∣x∣向左平移1个单位,在平面直角坐标系中画出了新函数的部分图象,并请回答下列问题:

(1)平移后的函数解析式是__________

(2)借助下列表格,用你认为最简单的方法补画平移后的函数图象:

(3)x 时,yx的增大而增大;当x 时,yx的增大而减小.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知点AB分别在反比例函数x0),x0)的图象上,且∠AOB=90°,则∠B=30°,则k的取值为(  )

A. B. C. 2 D. 3

查看答案和解析>>

同步练习册答案