精英家教网 > 初中数学 > 题目详情
16.在下列实数中,无理数是(  )
A.0B.-$\frac{22}{7}$C.$\sqrt{2}$D.$\sqrt{9}$

分析 无理数就是无限不循环小数.理解无理数的概念,一定要同时理解有理数的概念,有理数是整数与分数的统称.即有限小数和无限循环小数是有理数,而无限不循环小数是无理数.由此即可判定选择项.

解答 解:0,-$\frac{22}{7}$,$\sqrt{9}$是有理数,
$\sqrt{2}$是无理数,
故选:C.

点评 此题主要考查了无理数的定义,其中初中范围内学习的无理数有:π,2π等;开方开不尽的数;以及像0.1010010001…,等有这样规律的数.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:选择题

6.对于任意不相等的两个数a,b,定义一种运算*如下:a*b=$\frac{2\sqrt{a+b}}{a-b}$,如3*2=$\frac{2\sqrt{3+2}}{3-2}$=2$\sqrt{5}$,那么12*4的值为(  )
A.1B.2C.3D.4

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

7.如图,AB∥CD,图中α、β、γ三个角之间的数量关系为(  )
A.α+β+γ=360°B.α+β-γ=180°C.α+β+γ=180°D.α-β-γ=90°

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

4.计算:
(1)$\sqrt{27}$×$\sqrt{50}$$÷\sqrt{6}$
(2)2$\sqrt{12}$-6$\sqrt{\frac{1}{3}}$+3$\sqrt{48}$.

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

11.对于任意实数x,下列各式中一定成立的是(  )
A.$\sqrt{{x}^{2}-1}$=$\sqrt{x-1}$•$\sqrt{x+1}$B.$\sqrt{{(x+1)}^{2}}$=x+1C.$\sqrt{(-4)•(-x)}$=$\sqrt{-4}$•$\sqrt{-x}$D.$\sqrt{3{6x}^{4}}$=6x2

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

1.将一个半径为10cm的圆分成3个扇形,其圆心角的比1:2:3.
求:(1)各个扇形的圆心角的度数;
    (2)其中最小一个扇形的面积(结果保留π).

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

8.如图,在?ABCD中,∠D=45°,∠CAD=35°,求∠B和∠BAC的度数.

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

5.a、b、c为△ABC三边,不是直角三角形的是(  )
A.a2=c2-b2B.a=6,b=10,c=8
C.∠A:∠B:∠C=3:4:5D.a=8k,b=17k,c=15k

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

6.菲尔兹奖(Fields Medal)是享有崇高声誉的数学大奖,每四年颁奖一次,颁给二至四名成就显著的年轻数学家,下面是对截至2015年56名获奖者的年龄进行统计得到的统计图.则下列说法中正确的是(  )
A.平均年龄是37.5岁B.中位数年龄位于33.5-36.5岁
C.众数年龄位于36.5-39.5岁D.以上选项都不正确

查看答案和解析>>

同步练习册答案