精英家教网 > 初中数学 > 题目详情
3.当x=2时,二次根式$\sqrt{5-{x^2}}$的值是1.

分析 把x=2代入二次根式后利用二次根式的性质化简即可.

解答 解:当x=2时,$\sqrt{5-{x^2}}$=$\sqrt{5-{2}^{2}}$=1.
故答案为1.

点评 本题考查了二次根式的性质与化简,注意结果为最简二次根式或整式.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:解答题

18.已知关于x的一元二次方程3x2-6x+1-k=0有实数根,k为负整数.
(1)求k的值;
(2)如果这个方程有两个整数根,求出它的根.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

14.先化简,再求值:3(x-1)(x-2)-3x(x+3),其中x=$\frac{1}{3}$.

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

11.计算$\frac{{{x^2}+2x}}{{{x^2}-4}}$的结果是$\frac{x}{x-2}$.

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

18.已知2是x的立方根,且(y-2z+5)2+$\sqrt{z-3}$=0,求$\root{3}{x+{y}^{3}+{z}^{3}-9}$的值.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

8.中点、平行线、等腰直角三角形、等边三角形都是常见的几何图形!
(1)如图1,若点D为等腰直角三角形ABC斜边BC的中点,点E、F分别在AB、AC边上,且∠EDF=90°,连接AD、EF,当BC=5$\sqrt{2}$,FC=2时,求EF的长度;
(2)如图2,若点D为等边三角形ABC边BC的中点,点E、F分别在AB、AC边上,且∠EDF=90°;M为EF的中点,连接CM,当DF∥AB时,证明:3ED=2MC;
(3)如图3,若点D为等边三角形ABC边BC的中点,点E、F分别在AB、AC边上,且∠EDF=90°;当BE=6,CF=0.8时,直接写出EF的长度.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

15.阅读与应用:
阅读1:a、b为实数,且a>0,b>0,因为($\sqrt{a}$-$\sqrt{b}$)2≥0,所以a-2$\sqrt{ab}$+b≥0从而a+b≥2$\sqrt{ab}$(当a=b时取等号).
阅读2:若函数y=x+$\frac{m}{x}$;(m>0,x>0,m为常数),由阅读1结论可知:x+$\frac{m}{x}$≥2$\sqrt{m}$,所以当x=$\frac{m}{x}$,即x=$\sqrt{m}$时,函数y=x+$\frac{m}{x}$的最小值为2$\sqrt{m}$.
阅读理解上述内容,解答下列问题:
问题1:已知一个矩形的面积为9,其中一边长为x,则另一边长为$\frac{9}{x}$,周长为2(x+$\frac{9}{x}$),求当x=3时,周长的最小值为12;
问题2:已知函数y1=x+1(x>-1)与函数y2=x2+2x+10(x>-1),当x为何值时,$\frac{{y}_{2}}{{y}_{1}}$有最小值,并求出这个最小值.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

12.(1)如图①,在边长为a的正方形纸片上剪去一个边长为b(b<a)的小正方形,通过不同的方法计算图中阴影部分的面积;
方法①a2-b2;方法②a(a-b)+b(a-b);
由此可以验证的乘法公式是(a+b)(a-b)=a2-b2
(2)类似地,在边长为a的正方体上割去一个边长为b(b<a)的小正方体(如图②),通过不同的方法计算图中余下几个几何体的体积.
方法①a3-b3;方法②a2(a-b)+ab(a-b)+b2(a-b);
由此可以得到的等式是a3-b3=(a-b)(a2+ab+b2),并证明这个等式.

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

13.单项式-a3b2c的系数及次数分别是(  )
A.系数是-1,次数是5B.系数是1,次数是5
C.系数是1,次数是6D.系数是-1,次数是6

查看答案和解析>>

同步练习册答案