精英家教网 > 初中数学 > 题目详情
某摩托车生产企业,上年度生产摩托车的投入成本为1万元/辆,出厂价为1.2万元/辆,年销售量为1000辆.本年度为适应市场需求,计划提高产品档次,适当增加投入成本,若每辆投入成本增加的比例为x(0<x<1),则出厂价相应提高的比例为0.75x,同时预计年销售量增加的比例为0.6x.
(1)求本年度预计的年利润y与投入成本增加的比例x的关系式;
(2)为使本年度的利润比上一年有所增加,投入成本增加的比例应在什么范围?
(1)由题意得
y=[1.2×(1+0.75x)-1×(1+x)]×1000×(1+0.6x)(0<x<1),
整理得y=-60x2+20x+200(0<x<1).

(2)要保证本年度的利润比上年度有所增加,
当且仅当
y-(1.2-1)×1000>0
0<x<1.

-60x2+20x>0
0<x<1.

解不等式得 0<x<
1
3

答:为保证本年度的年利润比上年度有所增加,投入成本增加的比例x应满足 0<x<
1
3
.(12分)
练习册系列答案
相关习题

科目:初中数学 来源:不详 题型:解答题

平移二次函数y=2x2的图象,使它经过(-1,0),(2,-6)两点.
(1)求这时图象对应的函数关系式.
(2)求出抛物线的顶点坐标和对称轴.
(3)画出该函数的图象.(温馨提示:把坐标系画全,可要记住列表哟)
x-10123
y0-6-8-60
(4)x为何值时,y随x的增大而减小.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

已知抛物线y=ax2+bx+3经过A(-3,0),B(-1,0)两点如图1,顶点为M.
(1)求a、b的值;
(2)设抛物线与y轴的交点为Q,且直线y=-2x+9与直线OM交于点D(如图1).现将抛物线平移,保持顶点在直线OD上,当抛物线的顶点平移到D点时,Q点移至N点,求抛物线上的两点M、Q间所夹的曲线
MQ
扫过的区域的面积;
(3)将抛物线平移,当顶点M移至原点时,过点Q(0,3)作不平行于x轴的直线交抛物线于E,F两点(如图2).试探究:在y轴的负半轴上是否存在点P,使得∠EPQ=∠QPF?若存在,求出点P的坐标;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

将进货单价为40元的商品按50元售出时,就能卖出500个,已知这个商品每个涨价1元,其销售量就减少10个.
(1)问:为了赚得8000元的利润,售价应定为多少?这时进货多少个?
(2)当定价为多少元时,可获得最大利润?

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图,将OA=8,AB=6的矩形OABC放置在平面直角坐标系中,动点M,N以每秒1个单位的速度分别从点A,C同时出发,其中点M沿AO向终点O运动,点N沿CB向终点B运动,当两个动点运动了t秒时,过点N作NP⊥BC,交OB于点P,连接MP.
(1)点B的坐标为______;用含t的式子表示点P的坐标为______;
(2)记△OMP的面积为S,求S与t的函数关系式(0<t<8),并求当t为何值时,S有最大值?若有,求出这个最大值;
(3)试探究:在上述运动过程中,是否存在某一个时刻,△OPM是等腰三角形?若存在,求出点M的坐标;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图,抛物线y=ax2+bx+c(a≠0)与x轴、y轴分别相交于A(-1,0)、B(3,0)、C(0,3)三点,其顶点为D.(1)求:经过A、B、C三点的抛物线的解析式;
(2)求四边形ABDC的面积;
(3)试判断△BCD与△COA是否相似?若相似写出证明过程;若不相似,请说明理由.
注:抛物线y=ax2+bx+c(a≠0)的顶点坐标为(-
b
2a
4ac-b2
4a
)

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

已知抛物线y=ax2-2x+c与它的对称轴相交于点A(1,-4),与y轴交于C,与x轴正半轴交于B.
(1)求这条抛物线的函数关系式;
(2)设直线AC交x轴于D,P是线段AD上一动点(P点异于A,D),过P作PEx轴交直线AB于E,过E作EF⊥x轴于F,求当四边形OPEF的面积等于
7
2
时点P的坐标.

查看答案和解析>>

科目:初中数学 来源:不详 题型:单选题

一男生推铅球,铅球在运动过程中,高度不断发生变化.已知当铅球飞出的水平距离为x时,其高度为(-
1
12
x2+
2
3
x+
5
3
)
米,则这位同学推铅球的成绩为(  )
A.9米B.10米C.11米D.12米

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图,某小区要修建一块矩形绿地,设矩形的长为x米,宽为y米,且x>y.
(1)如果用18米的建筑材料来修建绿地的边框(即周长),求y与x的函数关系式,并求出x的取值范围;
(2)现根据小区的规划要求,所修建的矩形绿地面积必须是18平方米,在满足(1)的条件下,问矩形的长和宽各为多少米?

查看答案和解析>>

同步练习册答案