精英家教网 > 初中数学 > 题目详情
精英家教网在平面直角坐标系中,已知抛物线经过A(-4,0),B(0,-4),C(2,0)三点.
(1)求抛物线的解析式;
(2)若点M为第三象限内抛物线上一动点,点M的横坐标为m,△AMB的面积为S、求S关于m的函数关系式,并求出S的最大值.
(3)若点P是抛物线上的动点,点Q是直线y=-x上的动点,判断有几个位置能够使得点P、Q、B、O为顶点的四边形为平行四边形,直接写出相应的点Q的坐标.
分析:(1)由待定系数法将A(-4,0),B(0,-4),C(2,0)三个点的坐标代入y=ax2+bx+c,联立求解即可;
(2)过M作x轴的垂线,设垂足为D.设点M的坐标为(m,n),即可用含m的代数式表示MD、OD的长,分别求出△AMD、梯形MDOB、△AOB的面积,那么△AMD、梯形MDOB的面积和减去△AOB的面积即为△AMB的面积,由此可得关于S、m的函数关系式,根据函数的性质即可求得S的最大值.
(3)解决此题需要充分利用平行四边形的性质求解.设P(x,
1
2
x2+x-4),
①如图1,当OB为边时,根据平行四边形的性质知PQ∥OB,则Q(x,-x).由PQ=OB即可求出结论;
②如图2,当OB为对角线时,那么P、Q的横坐标互为相反数(若P的横坐标为x,则Q的横坐标为-x),即Q(-x,x).由P、O的纵坐标差的绝对值等于Q、B纵坐标差的绝对值,得
1
2
x2+x-4=-4-x,求出x的值即可.
解答:解:(1)设抛物线的解析式为y=a(x+4)(x-2),
把B(0,-4)代入得,-4=a×(0+4)(0-2),解得a=
1
2

∴抛物线的解析式为:y=
1
2
(x+4)(x-2),即y=
1
2
x2+x-4;

(2)过点M作MD⊥x轴于点D,设M点的坐标为(m,n),精英家教网
则AD=m+4,MD=-n,n=
1
2
m2+m-4,
∴S=S△AMD+S梯形DMBO-S△ABO
=
1
2
(m+4)(-n)+
1
2
(-n+4)(-m)-
1
2
×4×4

=-2n-2m-8
=-2×(
1
2
m2+m-4)-2m-8
=-m2-4m
=-(m+2)2+4(-4<m<0);
∴S最大值=4.

(3)设P(x,
1
2
x2+x-4).
①如图1,当OB为边时,根据平行四边形的性质知PQ∥OB,
∴Q的横坐标等于P的横坐标,
又∵直线的解析式为y=-x,
则Q(x,-x).
由PQ=OB,得|-x-(
1
2
x2+x-4)|=4,解得x=0,-4,-2±2
5
.x=0不合题意,舍去.由此可得Q(-4,4)或(-2+2
5
,2-2
5
)或(-2-2
5
,2+2
5
);
精英家教网
②如图2,当BO为对角线时,知A与P应该重合,OP=4.四边形PBQO为平行四边形则BQ=OP=4,Q横坐标为4,代入y=-x得出Q为(4,-4).
故满足题意的Q点的坐标有四个,分别是(-4,4),(4,-4),(-2+2
5
,2-2
5
),(-2-2
5
,2+2
5
).
点评:此题主要考查了二次函数解析式的确定、图形面积的求法、二次函数最值的应用以及平行四边形的判定和性质;此题的难点在于(3)题,需要熟练掌握平行四边形的性质,并且要考虑到各种情况才能做到不漏解.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

28、在平面直角坐标系中,点P到x轴的距离为8,到y轴的距离为6,且点P在第二象限,则点P坐标为
(-6,8)

查看答案和解析>>

科目:初中数学 来源: 题型:

10、在平面直角坐标系中,点P1(a,-3)与点P2(4,b)关于y轴对称,则a+b=
-7

查看答案和解析>>

科目:初中数学 来源: 题型:

在平面直角坐标系中,有A(2,3)、B(3,2)两点.
(1)请再添加一点C,求出图象经过A、B、C三点的函数关系式.
(2)反思第(1)小问,考虑有没有更简捷的解题策略?请说出你的理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,在平面直角坐标系中,开口向下的抛物线与x轴交于A、B两点,D是抛物线的顶点,O为精英家教网坐标原点.A、B两点的横坐标分别是方程x2-4x-12=0的两根,且cos∠DAB=
2
2

(1)求抛物线的函数解析式;
(2)作AC⊥AD,AC交抛物线于点C,求点C的坐标及直线AC的函数解析式;
(3)在(2)的条件下,在x轴上方的抛物线上是否存在一点P,使△APC的面积最大?如果存在,请求出点P的坐标和△APC的最大面积;如果不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

18、在平面直角坐标系中,把一个图形先绕着原点顺时针旋转的角度为θ,再以原点为位似中心,相似比为k得到一个新的图形,我们把这个过程记为【θ,k】变换.例如,把图中的△ABC先绕着原点O顺时针旋转的角度为90°,再以原点为位似中心,相似比为2得到一个新的图形△A1B1C1,可以把这个过程记为【90°,2】变换.
(1)在图中画出所有符合要求的△A1B1C1
(2)若△OMN的顶点坐标分别为O(0,0)、M(2,4)、N(6,2),把△OMN经过【θ,k】变换后得到△O′M′N′,若点M的对应点M′的坐标为(-1,-2),则θ=
0°(或360°的整数倍)
,k=
2

查看答案和解析>>

同步练习册答案