精英家教网 > 初中数学 > 题目详情

【题目】如图,一块材料的形状是锐角三角形ABC,边BC=120mm,高AD=80mm,把它加工成矩形零件,使矩形的一边在BC上,其余两个顶点分别在ABAC上,设EG=x mmEF=y mm

1)写出xy的关系式;

2)用S表示矩形EGHF的面积,某同学说当矩形EGHF为正方形时S最大,这个说法正确吗?说明理由,并求出S的最大值.

【答案】1y=120-x;(2)当矩形EGHF为正方形时S最大,这个说法是错误的. x=40mmy=60mm时,矩形EGHF的面积最大,最大面积为2400平方毫米.

【解析】

1)易证△AEF∽△ABC,根据相似三角形对应边的比等于对应高的比,即可求解;

2)矩形EGHF的面积S=xy,根据(1)中yx的函数关系式,即可得到Sx之间的函数关系,根据函数的性质即可求解;

根据已知条件易知:EFBCADEFPN=GH=ymmDK=EG=xmm

∴△AEF∽△ABC

从而有,,

y=120-x

2)设矩形EGHF的面积为S,则S=xy

S=x120-x),

x=-=40时,S有最大值为2400

此时y==60

x=40mmy=60mm时,矩形EGHF的面积最大,最大面积为2400平方毫米.

故当矩形当矩形EGHF为正方形时S最大,这个说法是错误的.为正方形时S最大,这个说法是错误的.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图1,分别沿长方形纸片ABCD和正方形纸片EFGH的对角线AC,EG剪开,拼成如图2所示的ALMN,若中间空白部分四边形OPQR恰好是正方形,且ALMN的面积为50,则正方形EFGH的面积为(  )

A. 24 B. 25 C. 26 D. 27

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在△ABC中,AC=3,BC=4,若AC,BC边上的中线BE,AD垂直相交于点O,则AB=______.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】△ABC是等边三角形,点D是射线BC上的一个动点(点D不与点B、C重合),△ADE是以AD为边的等边三角形,过点E作BC的平行线,分别交射线AB、AC于点F、G,连接BE.

(1) 如图1,当点D在线段BC上时:

①求证:△AEB≌△ADC;②求证:四边形BCGE是平行四边形;

(2)如图2,当点D在BC的延长线上,且CD=BC时,试判断四边形BCGE是什么特殊的四边形?并说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图所示,已知抛物线的图像经过点A(1,0),B(0,5),

(1)求这个抛物线的解析式;

(2)设(1)中的抛物线与x轴的另一个交点为C,求出点C的坐标;并确定在抛物线上是否存在一点E,使△BCE是以BC为斜边的直角三角形?若存在,在图中做出所有的点E(不写画法,保留作图痕迹);若不存在,说明理由;

(3)点P是直线BC上的一个动点(P点不与B点和C点重合),过点Px轴的垂线,交抛物线于点M,Q在直线BC上,距离点P个单位长度,设点P的横坐标为t,△PMQ的面积为S,求出St之间的函数关系式。

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知二次函数的图象如下所示,下列5个结论:①(的实数),其中正确的结论有几个?

A. ①②③ B. ②③④ C. ②③⑤ D. ③④⑤

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,已知抛物线y=ax+2)(x-4)(a为常数,且a0)与x轴从左至右依次交于AB两点,与y轴交于点C,经过点B的直线y=-x+b与抛物线的另一交点为D,且点D的横坐标为-5

1)求抛物线的函数表达式;

2P为直线BD下方的抛物线上的一点,连接PDPB,求△PBD面积的最大值;

3)设F为线段BD上一点(不含端点),连接AF,一动点M从点A出发,沿线段AF以每秒1个单位的速度运动到F,再沿线段FD以每秒2个单位的速度运动到D后停止,当点F的坐标是多少时,点M在整个运动过程中用时最少?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】阅读下面材料:

在数学课上,老师请同学思考如下问题:如图1,我们把一个四边形ABCD的四边中点E,F,G,H依次连接起来得到的四边形EFGH是平行四边形吗?

小敏在思考问题,有如下思路:连接AC.

结合小敏的思路作答

(1)若只改变图1中四边形ABCD的形状(如图2),则四边形EFGH还是平行四边形吗?说明理由参考小敏思考问题方法解决一下问题

(2)如图2,在(1)的条件下,若连接AC,BD.

①当AC与BD满足什么条件时,四边形EFGH是菱形,写出结论并证明;

②当AC与BD满足什么条件时,四边形EFGH是矩形,直接写出结论.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,正方形ABCD的边长为1,分别以顶点ABCD为圆心,1为半径画弧,四条弧交于点EFGH,则图中阴影部分的外围周长为_____

查看答案和解析>>

同步练习册答案