分析 (1)连接OD,由BD为角平分线得到一对角相等,再根据等腰三角形的性质得出一对内错角相等,进而确定出OD与BC平行,利用两直线平行同位角相等得到∠ODA为直角,即可得证;
(2)过O作OG垂直于BE,可得出四边形ODCG为矩形,利用勾股定理求出BG的长,根据相似三角形的性质即可得到结论.
解答 (1)证明:连接OD,如图,
∵BD为∠ABC平分线,
∴∠1=∠2,
∵OB=OD,
∴∠1=∠3,
∴∠2=∠3,
∴OD∥BC,
∵∠C=90°,
∴∠ODA=90°,
∴AC是⊙O的切线;
(2)解:过O作OG⊥BC,连接OE,
则四边形ODCG为矩形,
∴GC=OD=OB=10,OG=CD=8,
在Rt△OBG中,利用勾股定理得:BG=6,
∵OG⊥BC,∠C=90°,
∴OG∥AC,
∴△BOG∽△BAC,
∴$\frac{BG}{OD}=\frac{OG}{AD}$,即$\frac{6}{10}$=$\frac{8}{AD}$,
∴AD=$\frac{40}{3}$.
点评 此题考查了切线的判定,等腰三角形的性质,矩形的判定与性质,相似三角形的判定和性质,熟练掌握切线的判定方法是解本题的关键.
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:选择题
A. | $\frac{25}{17}$ | B. | $\frac{30}{17}$ | C. | $\frac{17}{12}$ | D. | $\frac{19}{12}$ |
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:选择题
A. | 7 | B. | 11 | C. | 13 | D. | 20 |
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com