精英家教网 > 初中数学 > 题目详情

【题目】阅读材料题

AB在数轴上分别表示实数AB两点之间的距离记作AB. 当AB两点中有一点为原点时,不妨设A点在原点。如下图①所示,则AB =OB =.

AB两点都不在原点时:

(1)上图②所示,点AB都在原点的右边,不妨设点A在点B的左侧,则ABOBOA

(2)上图③所示,点AB都在原点的左边,不妨设点A在点B的右侧,则ABOBOA

(3)如上图④所示,点AB分别在原点的两边,不妨设点A在点O的右侧,则ABOBOA

回答下列问题:

①综上所述,数轴上AB两点之间的距离AB       .

②数轴上表示2和的两点A和B之间的距离AB       .

③数轴上表示x的两点AB之间的距离AB      ,如果AB=2,则x的值为     .

④若代数式有最小值,则最小值为 .

【答案】(1);(2)8;(3),0或-4;(4)5.

【解析】

归纳总结得到一般性规律,写出数轴上两点间的距离公式,分别求出即可.

(1)综上所述,数轴上A. B两点之间的距离AB=|ab|

(2)数轴上表示26的两点AB之间的距离AB=2(6)=2+6=8

(3)数轴上表示x2的两点AB之间的距离AB=|x+2|,如果AB=2,则x的值为04

(4)若代数式|x+2|+|x3|有最小值,则最小值为5.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】已知:如图,在半径为4⊙O中,ABCD是两条直径,MOB的中点,CM的延长线交⊙O于点E,且EMMC.连结DEDE

1求证:

2EM的长;

3)求sin∠EOB的值

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在ABCD中,以点A为圆心,以任意长为半径画圆弧,分别交边ADAB于点MN,再分别以点MN为圆心,以大于长为半径画圆弧,两弧交于点P,作射线AP交边CD于点E,过点EEFADAB于点F.若AB=5CE=2,则四边形ADEF的周长为______

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,抛物线 a≠0)的对称轴为直线x=1,与x轴的一个交点坐标为(﹣10),其部分图象如图所示,下列结论:

①4acb2

方程 的两个根是x1=1x2=3

③3a+c0

y0时,x的取值范围是﹣1≤x3

x0时,yx增大而增大

其中结论正确的个数是(  )

A. 4 B. 3 C. 2 D. 1

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】一位小朋友在粗糙不打滑的“Z”字形平面轨道上滚动一个半径为10cm的圆盘,如图所示,AB与CD是水平的,BC与水平面的夹角为60°,其中AB=60cm,CD=40cm,BC=40cm,那么该小朋友将圆盘从A点滚动到D点其圆心所经过的路线长为___________cm

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图(1),AB∥CD,猜想∠BPD与∠B、∠D的关系,说出理由.

解:猜想∠BPD+∠B+∠D=360°

理由:过点P作EF∥AB,

∴∠B+∠BPE=180°(两直线平行,同旁内角互补)

∵AB∥CD,EF∥AB,

∴EF∥CD,(如果两条直线都和第三条直线平行,那么这两条直线也互相平行.)

∴∠EPD+∠D=180°(两直线平行,同旁内角互补)

∴∠B+∠BPE+∠EPD+∠D=360°

∴∠B+∠BPD+∠D=360°

(1)依照上面的解题方法,观察图(2),已知AB∥CD,猜想图中的∠BPD与∠B、∠D的关系,并说明理由.

(2)观察图(3)和(4),已知AB∥CD,猜想图中的∠BPD与∠B、∠D的关系,不需要说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】20183月,某市教育主管部门在初中生中开展了文明礼仪知识竞赛活动,活动结束后,随机抽取了部分同学的成绩(x均为整数,总分100分),绘制了如下尚不完整的统计图表.

调查结果统计表

组别

 成绩分组(单位:分)

 频数

 频率

 A

 80x85

 50

 0.1

 B

 85x90

 75

 C

 90x95

 150

 c

 D

 95x100

 a

 合计

 b

1

根据以上信息解答下列问题:

(1)统计表中,a=_____,b=_____,c=_____

(2)扇形统计图中,m的值为_____,“C”所对应的圆心角的度数是_____

(3)若参加本次竞赛的同学共有5000人,请你估计成绩在95分及以上的学生大约有多少人?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,边长为6的正方形绕点按顺时针方向旋转后得到正方形于点,则____________

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,正方形ABCO的边OA、OC在坐标轴上,点B坐标为(6,6),将正方形ABCO绕点C逆时针旋转角度α(0°<α<90°),得到正方形CDEF,ED交线段AB于点G,ED的延长线交线段OA于点H,连CH、CG.

(1)求证:CBG≌△CDG;

(2)求HCG的度数;并判断线段HG、OH、BG之间的数量关系,说明理由;

(3)连结BD、DA、AE、EB得到四边形AEBD,在旋转过程中,四边形AEBD能否为矩形?如果能,请求出点H的坐标;如果不能,请说明理由.

查看答案和解析>>

同步练习册答案