分析 (1)易证∠CAD=∠BCE,即可证明△CDA≌△BEC,即可解题;
(2)根据(1)中结论可得CD=BE,CE=AD,根据DE=CE-CD,即可解题.
解答 证明:(1)∵BE⊥CE于点E,AD⊥CE于点D,∠ACB=90°
∴∠ACD+∠BCE=90°,∠ACD+∠CAD=90°,
∴∠CAD=∠BCE,
在△CDA和△BEC中,$\left\{\begin{array}{l}{∠CDA=∠BEC}\\{∠CAD=∠BCE}\\{AC=BC}\end{array}\right.$,
∴△CDA≌△BEC(AAS);
(2)由(1)知,△CDA≌△BEC,
∴CD=BE,CE=AD,
∵DE=CE-CD,
∴DE=AD-BE,
∴BE=10-7=3cm.
点评 此题是三角形综合题,主要考查了全等三角形的判定,考查了全等三角形对应边相等的性质,本题中求证△CDA≌△BEC是解题的关键.
科目:初中数学 来源: 题型:选择题
A. | ①②④ | B. | ①③④ | C. | ②③④ | D. | ①②③ |
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com