精英家教网 > 初中数学 > 题目详情
9.在平面直角坐标系xOy中,直线y=k1x+b与x轴交于点B,与y轴交于点C,与反比例函数y=$\frac{{k}_{2}}{x}$的图象在第一象限交于点A(3,1),连接OA.
(1)求反比例函数y=$\frac{{k}_{2}}{x}$的解析式;
(2)若S△AOB:S△BOC=1:2,求直线y=k1x+b的解析式.

分析 (1)将点A的坐标代入反比例函数解析式中,得出关于k2的一元一次方程,解方程即可得出结论;
(2)分两种情况考虑:①直线y=k1x+b经过第一、三、四象限,由S△AOB:S△BOC=1:2结合三角形的面积公式得出点C的坐标,由待定系数法即可求出此时直线的函数解析式;②直线y=k1x+b经过第一、二、四象限,由S△AOB:S△BOC=1:2结合三角形的面积公式得出点C的坐标,由待定系数法即可求出此时直线的函数解析式.

解答 解:(1)将点A(3,1)代入到y=$\frac{{k}_{2}}{x}$中,得1=$\frac{{k}_{2}}{3}$,
解得:k2=3.
故反比例函数的解析式为y=$\frac{3}{x}$.
(2)符合题意有两种情况:
①直线y=k1x+b经过第一、三、四象限,如图1所示.

∵S△AOB:S△BOC=1:2,点A(3,1),
∴点C的坐标为(0,-2).
则有$\left\{\begin{array}{l}{-2=b}\\{1=3{k}_{1}+b}\end{array}\right.$,解得:$\left\{\begin{array}{l}{{k}_{1}=1}\\{b=-2}\end{array}\right.$.
∴直线的解析式为y=x-2.
②直线y=k1x+b经过第一、二、四象限,如图2所示.

∵S△AOB:S△BOC=1:2,点A(3,1),
∴点C的坐标为(0,2).
则有$\left\{\begin{array}{l}{1=3{k}_{1}+b}\\{2=b}\end{array}\right.$,解得:$\left\{\begin{array}{l}{{k}_{1}=-\frac{1}{3}}\\{b=2}\end{array}\right.$.
∴直线的解析式为y=-$\frac{1}{3}$x+2.

点评 本题考查了反比例函数与一次函数交点的问题、待定系数法求函数解析式以及三角形的面积公式,解题的关键:(1)将点A的坐标代入反比例函数解析式中得到关于k2的一元一次方程;(2)分两种情况分别求出点C的坐标.本题属于基础题,难度不大,解决该题型题目时,结合点的坐标利用待定系数法求出函数解析式是关键.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:解答题

19.如图,在△ABC中,点F是BC的中点,点E是线段AB的延长线上的一动点,连接EF,过点C作AB的平行线CD,与线段EF的延长线交于点D,连接CE、BD.
(1)求证:四边形DBEC是平行四边形.
(2)若∠ABC=120°,AB=BC=4,则在点E的运动过程中:
①当BE=2时,四边形BECD是矩形,试说明理由;
②当BE=4时,四边形BECD是菱形.

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

20.我们知道,在反比例函数y=$\frac{2}{x}$的图象上任取一点,过该点分别向两条坐标轴画垂线,这两条垂线与坐标轴围成的矩形面积始终是2.如果在某个函数的图象上任取一点,按同样的方式得到的矩形的周长始终是2,这个函数是y=-x+1(0<x<1).(写出一个满足条件的函数表达式及自变量的取值范围)

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

17.下列各数:0.458,3.$\stackrel{••}{14}$,-$\frac{π}{3}$,$\sqrt{0.4}$,$-\root{3}{0.001}$,$\sqrt{36}$中无理数有(  )
A.1个B.2个C.3个D.4个

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

4.甲、乙、丙、丁四人参加训练,近期的10次百米测试平均成绩都是13.2秒,方差如下表所示
选手
方差0.0300.0190.1210.022
则这四人中发挥最稳定的是(  )
A.B.C.D.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

14.某校想了解学生每周的课外阅读时间情况,随机调查了部分学生,对学生每周的课外阅读时间x(单位:小时)进行分组整理,并绘制了如图所示的不完整的频数分布直方图和扇形统计图:

根据图中提供的信息,解答下列问题:
(1)共随机调查了100名学生,课外阅读时间在6-8小时之间有25人,并补全频数分布直方图;
(2)求扇形统计图中m的值和E组对应的圆心角度数;
(3)请估计该校3000名学生每周的课外阅读时间不小于6小时的人数.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

1.如图,在菱形ABCD中,∠B=60°,点E、F分别在边AB、AD上,且AE=DF.
(1)试判断△ECF的形状并说明理由;
(2)若AB=6,那么△ECF的周长是否存在最小值?如果存在,请求出来;如果不存在,请简要说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

18.已知实数a,b,满足$\frac{\sqrt{3a-b}+|{a}^{2}-49|}{\sqrt{a+7}}$=0,c是$\sqrt{35}$的整数部分,求a+2b+3c的平方根.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

19.阅读下面材料:
上课时李老师提出这样一个问题:对于任意实数x,关于x的不等式x2-2x-1-a>0恒成立,求a的取值范围.
小捷的思路是:原不等式等价于x2-2x-1>a,设函数y1=x2-2x-1,y2=a,画出两个函数的图象的示意图,于是原问题转化为函数y1的图象在y2的图象上方时a的取值范围.

请结合小捷的思路回答:
对于任意实数x,关于x的不等式x2-2x-1-a>0恒成立,则a的取值范围是a<-2.
参考小捷思考问题的方法,解决问题:
关于x的方程x-4=$\frac{a-3}{x}$在0<a<4范围内有两个解,求a的取值范围.

查看答案和解析>>

同步练习册答案