精英家教网 > 初中数学 > 题目详情
已知二次函数y=ax2+bx+c(a,b,c均为实数且a≠0)满足条件:对任意实数x都有y≥2x;且当0<x<2时,总有y≤
1
2
(x+1)2
成立.
(1)求a+b+c的值;
(2)求a-b+c的取值范围.
(1)由题意可知对任意实数x都有y≥2x,
∴当x=1时,y≥2;
且当0<x<2时,总有y≤
1
2
(x+1)2
成立,
故当x=1,y≤2,
∴当x=1时,y=2,故二次函数y=ax2+bx+c经过(1,2)点,
∴a+b+c=2;

(2)ax2+bx+c≥2x,
ax2+(b-2)x+c≥0,
由(1)知b=2-a-c,代入得△=(a+c)2-4ac≥0,(a-c)2≥0,
所以c=a,b=2-2a.
再列得ax2+bx+c≤
1
2
(x+1)2,把c=a,b=2-2a代入可得 (a-
1
2
)x2-2(a-
1
2
)x+a-
1
2
≤0,(a-
1
2
)(x-1)2≤0,
因为0<x<2,(x-1)≥0,
故a≤
1
2

根据图象法可得此抛物线要永远在y=2x这条一次函数上方满足a>0.
综上所述,a的取值范围是0<a≤
1
2
,a-b+c=4a-2,把a的取值范围代入可得-2<a-b+c≤0.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

21、已知二次函数y=a(x+1)2+c的图象如图所示,则函数y=ax+c的图象只可能是(  )

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,已知二次函数y=ax+bx+c的图象与x轴交于点A.B,与y轴交于点 C.

(1)写出A. B.C三点的坐标;(2)求出二次函数的解析式.

查看答案和解析>>

科目:初中数学 来源:2013-2014学年广东省广州市海珠区九年级上学期期末数学试卷(解析版) 题型:选择题

已知二次函数y=ax²+bx+c(a≠0)的图像如图所示,则下列结论中正确的是(   )

A.a>0             B.3是方程ax²+bx+c=0的一个根

C.a+b+c=0          D.当x<1时,y随x的增大而减小

 

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

已知二次函数y=ax+bx+c(a≠0,a,b,c为常数),对称轴为直线x=1,它的部分自变量与函数值y的对应值如下表,写出方程ax2+bx+c=0的一个正数解的近似值________(精确到0.1).
x-0.1-0.2-0.3-0.4
y=ax2+bx+c-0.58-0.120.380.92

查看答案和解析>>

科目:初中数学 来源: 题型:

已知二次函数y=ax²+bx+c(c≠0)的图像如图4所示,下列说法错误的是:

(A)图像关于直线x=1对称

(B)函数y=ax²+bx+c(c ≠0)的最小值是 -4

(C)-1和3是方程ax²+bx+c=0(c ≠0)的两个根

(D)当x<1时,y随x的增大而增大

查看答案和解析>>

同步练习册答案