精英家教网 > 初中数学 > 题目详情

【题目】如图所示,在中,的平分线交于点,过点于点,交于点,那么下列结论:①;②;③都是等腰三角形;④的周长等于的和,其中正确的有(  )

A.4B.3C.2D.1

【答案】B

【解析】

通过平行线和角平分线得到相等的角,再根据平行线的性质及等腰三角形的判定和性质解答即可.

解:∵∠ABC、∠ACB的平分线相交于点P

∴∠MBP=PBC,∠PCN=PCB

又∵MNBC

∴∠PBC=MPB,∠NPC=PCB

∴∠MBP=MPB,∠NPC=PCN

BM=MPPN=CN

MN=MP+PN=BM+CN,故正确,

BMP和△CNP都是等腰三角形,故③正确,

∵△AMN的周长=AM+AN+MNMN=BM+CN

∴△AMN的周长等于ABAC的和,故④正确,

不能说明,故①错误;

故答案为B

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】已知关于x的一元二次方程x2﹣2mx+(m﹣1)2=0有两个实数根x1x2

1)求m的取值范围;

2)当x12+x22=28时,求m的值.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,已知函数的图象为直线,函数的图象为直线,直线分别交轴于点和点,分别交轴于点相交于点

(1)填空:  ;求直线的解析式为

(2)若点轴上一点,连接,当的面积是面积的2倍时,请求出符合条件的点的坐标;

(3)若函数的图象是直线,且不能围成三角形,直接写出的值.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】商场某种商品平均每天可销售30件,每件盈利50元。为了尽快减少库存,商场决定采取适当的降价措施。经调查发现,每件商品每降价1元,商场平均每天可多售出2件。设每件商品降价元。据此规律,请回答:

(1)商场日销售量增加_____件,每件商品盈利_____元(用含的代数式表示)。

(2)在上述条件不变、销售正常情况下,每件商品降价多少元时,商场日盈利可达到2100元?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】省射击队为从甲、乙两名运动员中选拔一人参加全国比赛,对他们进行了六次测试,测试成绩如下表(单位:环):

第一次

第二次

第三次

第四次

第五次

第六次

10

8

9

8

10

9

10

7

10

10

9

8

(1)根据表格中的数据,计算出甲的平均成绩是 环,乙的平均成绩是 环;

(2)分别计算甲、乙六次测试成绩的方差;

(3)根据(1)、(2)计算的结果,你认为推荐谁参加全国比赛更合适,请说明理由.

计算方差的公式:s2 [(x1)2+(x2)2++(xn)2]

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图.在等边△ABC中,∠ABC与∠ACB的平分线相交于点O,且ODAB,OEAC.

(1)试判定△ODE的形状,并说明你的理由;

(2)线段BD、DE、EC三者有什么关系?写出你的判断过程.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】在一幅长为80cm,宽为50cm的矩形风景画的四周镶一条相同宽度的边框,制成一幅挂图,如图所示,设边框的宽为xcm,如果整个挂图的面积是5400cm2 ,那么下列方程符合题意的是( )

A. (50-x)(80-x)=5400 B. (50-2x)(80-2x)=5400

C. (50+x)(80+x)=5400 D. (50+2x)(80+2x)=5400

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,C为线段AB上一点,分别以AC,BC为边在AB的同侧作等边△HAC与等边△DCB,连接DH.

(1)如图1,当∠DHC=90°时,求的值;

(2)在(1)的条件下,作点C关于直线DH的对称点E,连接AE,BE.求证:CE平分∠AEB.

(3)现将图1中的△DCB绕点C顺时针旋转一定角度α(0°<α<90°),如图2,点C关于直线DH的对称点为E,则(2)中的结论是否还成立,并证明.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,隧道的截面由抛物线和长方形构成,长方形的长是8m,宽是2m,抛物线的最高点到路面的距离为6米.

1)按如图所示建立平面直角坐标系,求表示该抛物线的函数表达式;

2)一辆货运卡车高为4m,宽为2m,如果该隧道内设双向车道,那么这辆货车能否安全通过?

查看答案和解析>>

同步练习册答案