精英家教网 > 初中数学 > 题目详情
9.如图是一副三角板拼成的图案,则∠1=105°.

分析 根据三角形的外角的性质即可得到结论.

解答 解:∠1=45°+60°=105°,
故答案为:105.

点评 本题考查了三角形的外角的性质,熟练掌握三角形的外角的性质是解题的关键.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:选择题

19.如图,已知点A,B,C,D,E,F最边长为1的正六边形的顶点,在连接两点所得的所有线段中任取一条线段,取到长度为$\sqrt{3}$的线段的概率为(  )
A.$\frac{1}{4}$B.$\frac{2}{5}$C.$\frac{2}{3}$D.$\frac{5}{9}$

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

20.一标志性建筑的底面呈长方形,长是宽的2倍,在其四周铺上花岗岩,形成一个边宽为3米的长方形框(如图所示).已知铺这个框恰好用了504块边长为0.5米的正方向花岗岩(接缝忽略不计).若设此标志性建筑底面长方形的宽为x米,给出下列方程:
①4×3(2x+3)=0.5×0.5×504;
②2×3(2x+6)+2×3x=0.5×0.5×504;
③(x+6)(2x+6)-2x•x=0.5×0.5×504,
其中正确的是(  )
A.B.C.②③D.①②③

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

17.如图,在平面直角坐标系中有Rt△ABC,已知∠CAB=90°,AB=AC,A(-2,0),B(0,1).
(1)点C的坐标是(-3,2);
(2)将△ABC沿x轴正方向平移得到△A′B′C′,且B,C两点的对应点B′,C′恰好落在反比例函数y=$\frac{k}{x}$的图象上,求该反比例函数的解析式.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

4.如图,在正方形网格中,每个小正方形的边长为1个单位长度.平面直角坐标系xOy的原点O在格点上,x轴、y轴都在格线上.线段AB的两个端点也在格点上.
(1)若将线段AB绕点O顺时针旋转90°得到线段A′B′.试在图中画出线段A′B′;
(2)若线段A″B″与线段A′B′关于y轴对称,请画出线段A″B″;
(3)若点P是此平面直角坐标系内的一点,当点A、B′、B″、P四边围成的四边形为平行四边形时,请你直接写出点P的坐标.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

14.你能求(x-1)(x99+x98+x97+…+x+1)的值吗?遇到这样的问题,我们可以先思考一下,从简单的情形入手,先分别计算下列各式的值.
①(x-1)(x+1)=x2-1;
②(x-1)(x2+x+1)=x3-1;
③(x-1)(x3+x2+x+1)=x4-1;…
由此我们可以得到:(x-1)(x99+x98+x97+…+x+1)=x100-1;
请你利用上面的结论,解决下面的问题:若x2+x+1=0,求x2017的值.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

1.如图,在△ABC中,∠BAC=90°,AD是中线,E是AD的中点,过点A作AF∥BC交BE的延长线于F,连接CF,求证:四边形ADCF是菱形.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

18.在等边△AOB中,将扇形COD按图1摆放,使扇形的半径OC、OD分别与OA、OB重合,OA=OB=2,OC=OD=1,固定等边△AOB不动,让扇形COD绕点O逆时针旋转,线段AC、BD也随之变化,设旋转角为α.(0<α≤360°)
(1)当OC∥AB时,旋转角α=60或240度;
发现:(2)线段AC与BD有何数量关系,请仅就图2给出证明.
应用:(3)当A、C、D三点共线时,求BD的长.
拓展:(4)P是线段AB上任意一点,在扇形COD的旋转过程中,请直接写出线段PC的最大值与最小值.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

19.计算
(1)$\sqrt{24}$÷$\sqrt{3}$-$\sqrt{\frac{2}{3}}$×|-$\sqrt{3}$|+${(\sqrt{2}-1)}^{0}$      
(2)${(\sqrt{3}+1)}^{2}$-$\sqrt{{(-5)}^{2}}$+$\root{3}{-64}$.

查看答案和解析>>

同步练习册答案