【题目】已知关于的一元二次方程有实数根.
(1)求的取值范围.
(2)若该方程的两个实数根为、,且,求的值.
【答案】(1).(2).
【解析】
(1)根据方程的系数结合根的判别式△≥0,即可得出关于m的一元一次不等式,解之即可得出m的取值范围;
(2)由根与系数的关系可得出x1+x2=6,x1x2=4m+1,结合|x1-x2|=4可得出关于m的一元一次方程,解之即可得出m的值.
(1)∵关于x的一元二次方程x2-6x+(4m+1)=0有实数根,
∴△=(-6)2-4×1×(4m+1)≥0,
解得:m≤2;
(2)∵方程x2-6x+(4m+1)=0的两个实数根为x1、x2,
∴x1+x2=6,x1x2=4m+1,
∴(x1-x2)2=(x1+x2)2-4x1x2=42,即32-16m=16,
解得:m=1.
科目:初中数学 来源: 题型:
【题目】某校有名学生,为了解全校学生的上学方式,该校数学兴趣小组以问卷调查的形式,随机调查了该校部分学生的主要上学方式(参与问卷调查的学生只能从以下六个种类中选择一类),并将调查结果绘制成如下不完整的统计图.
根据以上信息,回答下列问题:
(1)参与本次问卷调查的学生共有_____人,其中选择类的人数有_____人;
(2)在扇形统计图中,求类对应的扇形圆心角的度数,并补全条形统计图;
(3)若将这四类上学方式视为“绿色出行”,请估计该校选择“绿色出行”的学生人数.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,平行四边形ABCD中,AB=3,BC=2,∠DAB=60°,E在AB上,且AE=EB,F是BC的中点,过D分别作DP⊥AF于P,DQ⊥CE于Q,则DP:DQ的值为_____.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】红旗连锁超市准备购进甲、乙两种绿色袋装食品.甲、乙两种绿色袋装食品的进价和售价如表.已知:用2000元购进甲种袋装食品的数量与用1600元购进乙种袋装食品的数量相同.
甲 | 乙 | |
进价(元/袋) | ||
售价(元/袋) | 20 | 13 |
(1)求的值;
(2)要使购进的甲、乙两种绿色袋装食品共800袋的总利润(利润=售价-进价)不少于4800元,且不超过4900元,问该超市有几种进货方案?
(3)在(2)的条件下,该超市如果对甲种袋裝食品每袋优惠元出售,乙种袋装食品价格不变.那么该超市要获得最大利润应如何进货?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,抛物线y=ax2+bx+c经过点(﹣1,0),对称轴l如图所示,则下列结论:①abc>0;②a﹣b+c=0;③2a+c<0;④a+b<0,其中所有正确的结论是( )
A.①③ B.②③ C.②④ D.②③④
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,二次函数的图象交轴于两点,交轴于点,点的坐标为,顶点的坐标为.
(1)求二次函数的解析式和直线的解析式;
(2)点是直线上的一个动点,过点作轴的垂线,交抛物线于点,当点在第一象限时,求线段长度的最大值;
(3)在抛物线上是否存在异于的点,使中边上的高为,若存在求出点的坐标;若不存在请说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在正方形ABCD中,对角线AC、BD相交于点O,E、F分别在OD、OC上,且DE=CF,连接DF、AE,AE的延长线交DF于点M.
(1)求证:AE=DF;
(2)求证:AM⊥DF.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知抛物线的对称轴是直线且与轴相交于两点,与轴交于点点的坐标为.
求抛物线的解析式;
若点是第一象限内抛物线上一点,过点作直线轴于点交直线于点当时,求四边形的面积.
在的条件下,若点在抛物线上,点在抛物线的对称轴上,当以点为顶点的四边形是平行四边形时,求出所有符合条件的点的坐标.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,是⊙的直径,是⊙的一条弦,,的延长线交⊙于点,交的延长线于点,连接,且恰好∥,连接交于点,延长交于点,连接.
(1)求证:是⊙的切线;
(2)求证:点是的中点;
(3)当⊙的半径为时,求的值.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com