精英家教网 > 初中数学 > 题目详情

【题目】如图,在直角坐标系中,抛物线yax2bx2x轴交于点A(3,0)B(1,0),与y轴交于点C

1)求抛物线的函数表达式.

2)在抛物线上是否存在点D,使得ABD的面积等于ABC的面积的倍?若存在,求出点D的坐标;若不存在,请说明理由.

3)若点E是以点C为圆心且1为半径的圆上的动点,点FAE的中点,请直接写出线段OF的最大值和最小值.

【答案】1;(2)存在,理由见解析;D(4, )或(2);(3)最大值 最小值

【解析】

1)将点AB的坐标代入函数解析式计算即可得到;

2)点D应在x轴的上方或下方,在下方时通过计算得ABD的面积是ABC面积的倍,判断点D应在x轴的上方,设设D(m,n),根据面积关系求出mn的值即可得到点D的坐标;

3)设E(x,y),由点E是以点C为圆心且1为半径的圆上的动点,用两点间的距离公式得到点E的坐标为E,再根据点FAE中点表示出点F的坐标,再设设F(m,n),再利用mn、与x的关系得到n=,通过计算整理得出,由此得出F点的轨迹是以为圆心,以为半径的圆,再计算最大值与最小值即可.

解:(1)将点A(3,0)B(1,0)代入yax2bx2中,得

,解得

2)若Dx轴的下方,当D为抛物线顶点(-1)时,

ABD的面积是ABC面积的倍,

,所以D点一定在x轴上方.

D(m,n), ABD的面积是ABC面积的倍,

n

m=-4m2

D(4, )或(2

3)设E(x,y),

∵点E是以点C为圆心且1为半径的圆上的动点,

,

y=,

E,

FAE的中点,

F的坐标,

F(m,n),

m=,n=,

x=2m+3,

n=,

2n+2=,

(2n+2)2=1-(2m+3)2,

4(n+1)2+4()2=1,

,

∴F点的轨迹是以为圆心,以为半径的圆,

∴最大值:

最小值:

最大值 最小值

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图,直线y=kx+b(k≠0)与双曲线y=(m≠0)交于点A(﹣,2),B(n,﹣1).

(1)求直线与双曲线的解析式.

(2)点P在x轴上,如果S△ABP=3,求点P的坐标.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】随着交通道路的不断完善,带动了旅游业的发展,某市旅游景区有A、B、C、D、E等著名景点,该市旅游部门统计绘制出2017年“五一”长假期间旅游情况统计图,根据以下信息解答下列问题:

(1)2017年“五一”期间,该市周边景点共接待游客 万人,扇形统计图中A景点所对应的圆心角的度数是 ,并补全条形统计图.

(2)根据近几年到该市旅游人数增长趋势,预计2018年“五一”节将有80万游客选择该市旅游,请估计有多少万人会选择去E景点旅游?

(3)甲、乙两个旅行团在A、B、D三个景点中,同时选择去同一景点的概率是多少?请用画树状图或列表法加以说明,并列举所用等可能的结果.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知抛物线的顶点为,且过点.直线轴相交于点.

1)求该抛物线的解析式;

2)以线段为直径的圆与射线相交于点,求点的坐标.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】二次函数y=ax2+bx+ca0)的图象如图所示,根据图象解答下列问题:

1)写出方程ax2+bx+c=0的两个根;

2)写出不等式ax2+bx+c0的解集;

3)写出yx的增大而减小的自变量x的取值范围.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】三角板是我们学习数学的好帮手.将一对直角三角板如图放置,点CFD的延长线上,点BED上,ABCF,∠F=∠ACB90°,∠E45°,∠A60°,AC10,则CD的长度是_____.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】一个不透明的布袋中有完全相同的三个小球,把它们分别标号为123. 小林和小华做一个游戏,按照以下方式抽取小球:先从布袋中随机抽取一个小球,记下标号后放回布袋中搅匀,再从布袋中随机抽取一个小球, 记下标号. 若两次抽取的小球标号之和为奇数,小林赢;若标号之和为偶数,则小华赢.

1)用画树状图或列表的方法,列出前后两次取出小球上所标数字的所有可能情况;

2)请判断这个游戏是否公平,并说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知:ABC中,点D为边BC上一点,点E在边AC上,且ADE=∠B

(1) 如图1,若ABAC,求证:

(2) 如图2,若ADAE,求证:

(3) (2)的条件下,若DAC=90°,且CE=4,tanBAD,则AB____________

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知的外接圆,的直径,过的中点的直径交弦于点,连接.

1)如图1,若点是线段的中点,求的度数;

2)如图2,在上取一点,使,求证:

3)如图3,取的中点,连接并延长于点,连接交于点,若,且,求的长.

查看答案和解析>>

同步练习册答案