精英家教网 > 初中数学 > 题目详情
如图,已知点A的坐标为(
3
,3),AB⊥x轴,垂足为B,连接OA,反比例函数y=
3
x
的图象与线段OA、AB分别交于点C、D.若以点C为圆心,CA的k倍的长为半径作圆,该圆与x轴相切,则k的值为
3+
3
4
3+
3
4
分析:先根据勾股定理求出OA的长,再利用待定系数法求出直线OA的解析式,故可得出C点坐标,过点C作CE⊥x轴于点E,则△OAB∽△OCE,再由相似三角形的对应边成比例即可求出OC的长,进而得出CA的长,故可得出结论.
解答:解:∵点A的坐标为(
3
,3),AB⊥x轴,垂足为B,
∴OA=
AB2+OB2
=
32+(
3
)
2
=2
3

设直线OA的解析式为y=kx(k≠0),
∵点A的坐标为(
3
,3),
3
k=3,解得k=
3

∴直线OA的解析式为y=
3
x(k≠0),
y=
3
x
y=
3
x
,解得
x=1
y=
3

∴C(1,
3
),
过点C作CE⊥x轴于点E,
∵AB⊥x轴,
∴△OAB∽△OCE,
OC
OA
=
CE
AB
,即
OC
2
3
=
3
3
,解得OC=2,
∴CA=OA-OC=2
3
-2=2(1-
3
),
∵以点C为圆心,CA的k倍的长为半径作圆,该圆与x轴相切,
∴kCA=CE,即2(1-
3
)=
3
,解得k=
3+
3
4

故答案为:
3+
3
4
点评:本题考查的是反比例函数综合题,熟知反比例函数的性质是解答此题的关键.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

精英家教网如图,已知点F的坐标为(3,0),点A,B分别是某函数图象与x轴、y轴的交点,点P是此图象上的一动点.设点P的横坐标为x,PF的长为d,且d与x之间满足关系:d=5-
35
x(0≤x≤5),给出以下四个结论:①AF=2;②BF=5;③OA=5;④OB=3.其中正确结论的序号是
 

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网如图,已知点A的坐标为(0,1),点B的坐标为(
3
2
,-2),点P在直线y=-x上运动,当|PA-PB|最大时点P的坐标为(  )
A、(2,-2)
B、(4,-4)
C、(
5
2
,-
5
2
D、(5,-5)

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网如图,已知点A的坐标为(
3
,3),AB丄x轴,垂足为B,连接OA,反比例函数y=
k
x
(k>0)的图象与线段OA、AB分别交于点C、D.若AB=3BD,以点C为圆心,CA的
5
4
倍的长为半径作圆,则该圆与x轴的位置关系是
 
(填”相离”,“相切”或“相交“).

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,已知点B的坐标为(6,9),点A的坐标为(6,6),点P为⊙A上一动点,PB的延长线交⊙A于点N、直线CD⊥AP于点C,交PN于点D,交⊙A于E、F两点,且PC:CA=2:3.
(1)当点P运动使得点E为劣弧
PN
的中点时,求证:DF=DN;
(2)在(1)的条件下求tan∠CDP的值;
(3)当⊙A的半径为5,且△APD的面积取得最大值时,求点P的坐标.

查看答案和解析>>

同步练习册答案