科目:初中数学 来源: 题型:
在课外小组活动时,小伟拿来一道题(原问题)和小熊、小强交流.
原问题:如图1,已知△ABC,∠ACB=90° , ∠ABC=45°,分别以AB、BC为边向外作△ABD与△BCE, 且DA=DB, EB=EC,∠ADB=∠BEC=90°,连接DE交AB于点F. 探究线段DF与EF的数量关系.小伟同学的思路是:过点D作DG⊥AB于G,构造全等三角形,通过推理使问题得解.小熊同学说:我做过一道类似的题目,不同的是∠ABC=30°,∠ADB=∠BEC=60°.小强同学经过合情推理,提出一个猜想,我们可以把问题推广到一般情况.请你参考小慧同学的思路,探究并解决这三位同学提出的问题:
1.写出原问题中DF与EF的数量关系
2.如图2,若∠ABC=30°,∠ADB=∠BEC=60°,原问题中的其他条件不变,你在(1)中得到的结论是否发生变化?请写出你的猜想并加以证明;
3.如图3,若∠ADB=∠BEC=2∠ABC,原问题中的其他条件不变,你在(1)中
得到的结论是否发生变化?请写出你的猜想并加以证明
查看答案和解析>>
科目:初中数学 来源:2011-2012学年四川乐山市区中考模拟数学试卷(解析版) 题型:解答题
在课外小组活动时,小伟拿来一道题(原问题)和小熊、小强交流.
原问题:如图1,已知△ABC, ∠ACB=90° , ∠ABC=45°,分别以AB、BC为边向外作△ABD与△BCE, 且DA=DB, EB=EC,∠ADB=∠BEC=90°,连接DE交AB于点F. 探究线段DF与EF的数量关系.小伟同学的思路是:过点D作DG⊥AB于G,构造全等三角形,通过推理使问题得解.小熊同学说:我做过一道类似的题目,不同的是∠ABC=30°,∠ADB=∠BEC=60°.小强同学经过合情推理,提出一个猜想,我们可以把问题推广到一般情况.请你参考小慧同学的思路,探究并解决这三位同学提出的问题:
1.写出原问题中DF与EF的数量关系
2.如图2,若∠ABC=30°,∠ADB=∠BEC=60°,原问题中的其他条件不变,你在(1)中得到的结论是否发生变化?请写出你的猜想并加以证明;
3.如图3,若∠ADB=∠BEC=2∠ABC,原问题中的其他条件不变,你在(1)中
得到的结论是否发生变化?请写出你的猜想并加以证明
查看答案和解析>>
科目:初中数学 来源:北京同步题 题型:填空题
查看答案和解析>>
科目:初中数学 来源: 题型:
张华与李明在讨论问题:“已知线段a、b,求作Rt△ABC,使∠C=90°,AB=a,AC=b”时,提出了如下的画法:1、画线段AB=a;2、以AB为直径画⊙O;3、以A为圆心,b为半径画圆与⊙O交于点C,连接BC,则△ABC为所求作的三角形.
问题1:在张华的画法中,他应用了什么知识得到∠C=90°的?
答:
问题2:已知△ABC中,∠ACB=90°,AC=BC=2,P、Q分别是边AB、BC上的动点,且点P不与A、B重合,点Q不与B、C重合,当CQ的长取不同的值时,
△CPQ是否可能为直角三角形?若可能,请求出CQ的范围;若不能,说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
已知点A、B在数轴上分别表示有理数a、b,A、B两点之间的距离表示为|AB|,当A、B两点中有一点在原点时,不妨设点A在原点,如图1,|AB|=|OB|=|b|=|a-b|,当A、B两点都不在原点时
① 如图2,点A、B都在原点的右边|AB|=|OB|-|OA|=|b|-|a|=b-a=|a-b|;
② 如图3,点A、B都在原点的左边,|AB|=|OB|-|OA|=|b|-|a|=-b-(-a)=a-b=|a-b|;
③ 如图4,点A、B在原点的两边,|AB|=|OB|+|OA|=|a|+|b|=a+(-b)=a-b=|a-b|;
综上,数轴上A、B两点之间的距离|AB|=|a-b|
利用上述结论,请结合数轴解答下列问题:
(1) 数轴上表示2和-5的两点之间的距离是_________,数轴上表示-1和-3的两点之间的距离是________
(2) 若数轴上有理数x满足|x-1|+|x+2|=5,则有理数x为___________
(2) 数轴上表示a和-1的点的距离可表示为|a+1|,表示a和3的点距离表示为|a-3|,当|a+1|+|a-3|取最小值时,有理数a的范围是______________,最小值是___________
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com