精英家教网 > 初中数学 > 题目详情
观察下列图案(如图),分别指出每个图案是由哪个“基本图案”旋转得来的.
第一个图形是由图1绕点O顺时针(或逆时针)旋转90°、再旋转90°,再旋转90°而成的;
第二个图形是由图2绕点O顺时针(或逆时针)旋转45°、再旋转45°,再旋转45°旋转7次而成的.

练习册系列答案
相关习题

科目:初中数学 来源:不详 题型:解答题

在图中的方格纸中,△ABC的顶点坐标分别为A(-4,2)、B(-1,3)、C(-3,4),△ABC中任意一点P的坐标为(a,b).
(1)△A1B1C1是由△ABC经过某种变换后得到的图形,观察它们对应点的坐标之间的关系,指出是怎样变换得到的?并写出点P对应点P1的坐标(用含a、b的代数式表示).
(2)作出△ABC关于原点O对称的△A2B2C2,并写出点P对应点P2的坐标(用含a、b的代数式表示).
(3)判断△A2B2C2能否看作是由△A1B1C1经过某种变换后得到的图形?若是,请指出是怎样变换得到的.

查看答案和解析>>

科目:初中数学 来源:不详 题型:填空题

如图,将△ABC绕着点C按顺时针方向旋转25°,B点落在B′位置,A点落在A′位置,若AC⊥A′B′,则∠BAC的度数是______度.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图,P是正方形ABCD内一点,PA=a,PB=2a,PC=3a.将△APB绕点B按顺时针方向旋转,使AB与BC重合,连接PP′,得到△PBP′.
(1)求证:△PBP′是等腰直角三角形;
(2)猜想△PCP′的形状,并说明理由.

查看答案和解析>>

科目:初中数学 来源:不详 题型:填空题

先将一矩形ABCD置于直角坐标系中,使点A与坐标系的原点重合,边AB,AD分别落在x轴、y轴上(如图1),再将此矩形在坐标平面内按逆时针方向绕原点旋转30°(如图2),若AB=4,BC=3,则图1和图2中点B点的坐标为______,点C的坐标______.

查看答案和解析>>

科目:初中数学 来源:不详 题型:单选题

如图,在4×4的正方形网格中,△MNP绕某点旋转一定的角度,得到△M1N1P1.则其旋转中心一定是(  )
A.点EB.点FC.点GD.点H

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

在△ABC中,∠ACB为锐角,点D为射线BC上一动点,连接AD,将线段AD绕点A逆时针旋转90°得到AE,连接EC.
(1)如果AB=AC,∠BAC=90°
①当点D在线段BC上时(不与点B重合),如图1,请你判断线段CE,BD之间的位置关系和数量关系(直接写出结论);
②当点D在线段BC的延长线上时,请你在图2中画出图形,并判断①中的结论是否仍然成立,并证明你的判断.
(2)如图3,若点D在线段BC上运动,DF⊥AD交线段CE于点F,且∠ACB=45°,AC=3
2
,试求线段CF长的最大值.

查看答案和解析>>

科目:初中数学 来源:不详 题型:单选题

矩形OABC在坐标系中的位置如图所示,OC=2,OA=4,把矩形OABC绕着原点顺时针旋转90°得到矩形OA1B1C1,则点B1的坐标为(  )
A.(2,4)B.(-2,4)C.(4,2)D.(2,4)

查看答案和解析>>

科目:初中数学 来源:不详 题型:填空题

如图,直角梯形ABCD中,ADBC,AB⊥BC,AD=2,BC=3,∠BCD=45°,将腰CD以点D为中心逆时针旋转90°至ED,连接AE,CE,则△ADE的面积是______.

查看答案和解析>>

同步练习册答案