精英家教网 > 初中数学 > 题目详情

【题目】如图,抛物线y=﹣x2+bx+c交x轴于点A﹣3,0和点B,交y轴于点C0,3).

1求抛物线的函数表达式;

2若点P在抛物线上,且SAOP=4SBOC,求点P的坐标;

3如图b,设点Q是线段AC上的一动点,作DQx轴,交抛物线于点D,求线段DQ长度的最大值

【答案】1y=x22x+32)(1,41+4143

【解析】

试题分析:1把A3,0,C0,3代入y=x2+bx+c,然后解方程组即可;2先求出点B的坐标1,0然后利用SAOP=4SBOC,求出点P的横坐标,代入y=x22x+3即可求出纵坐标;3用待定系数法求成直线AC的解析式y=x+3,设出Q点坐标为x,x+33x0,则D点坐标为x,x22x+3,然后用x表示出线段DQ长度,利用配方法可确定其最大值

试题解析:1把A3,0,C0,3代入y=x2+bx+c,得

解得

故该抛物线的解析式为:y=x22x+3

21知,该抛物线的解析式为y=x22x+3,则易得B1,0).

SAOP=4SBOC

×3×|x22x+3|=4××1×3

整理,得x+12=0或x2+2x7=0,

解得x=1或x=1±

则符合条件的点P的坐标为:1,41+414

3设直线AC的解析式为y=kx+t,将A3,0,C0,3代入,

解得

即直线AC的解析式为y=x+3

设Q点坐标为x,x+33x0,则D点坐标为x,x22x+3

QD=x22x+3x+3=x23x=x+2+

当x=时,QD有最大值

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】计算:102×98=______.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,AD平分∠BAC,AB=AC,连接BC,交AD于点E,下列说法正确的有(  )

①∠BAC=∠ACB;②S四边形ABDC=ADCE;③AB2+CD2=AC2+BD2;④AB﹣BD=AC﹣CD.

A. 1个 B. 2个 C. 3个 D. 4个

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图1,在平面直角坐标系xOy中,直线MN分别与x轴正半轴、y轴正半轴交于点M、N,且OM=6cm,∠OMN=30°,等边△ABC的顶点B与原点O重合,BC边落在x轴的正半轴上,点A恰好落在线段MN上,如图2,将等边△ABC从图1的位置沿x轴正方向以1cm/s的速度平移,边AB、AC分别与线段MN交于点E、F,在△ABC平移的同时,点P从△ABC的顶点B出发,以2cm/s的速度沿折线B→A→C运动,当点P达到点C时,点P停止运动,△ABC也随之停止平移.设△ABC平移时间为t(s),△PEF的面积为S(cm2).

(1)求等边△ABC的边长;

(2)当点P在线段BA上运动时,求S与t的函数关系式,并写出自变量t的取值范围;

(3)点P沿折线B→A→C运动的过程中,是否在某一时刻,使△PEF为等腰三角形?若存在,求出此时t值;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】为响应全民阅读号召,某校在七年级800名学生中随机抽取100名学生,对概念机学生在2015年全年阅读中外名著的情况进行调查,整理调查结果发现,学生阅读中外名著的本数,最少的有5本,最多的有8本,并根据调查结果绘制了如图所示的不完整的条形统计图,其中阅读了6本的人数占被调查人数的30%,根据图中提供的信息,补全条形统计图并估计该校七年级全体学生在2015年全年阅读中外名著的总本数.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】32×3.14+3×(﹣9.42)=

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】李明准备进行如下操作试验把一根长40 cm的铁丝剪成两段并把每段首尾相连各围成一个正方形

(1)要使这两个正方形的面积之和等于58 cm2李明应该怎么剪这根铁丝?

(2)李明认为这两个正方形的面积之和不可能等于48 cm2你认为他的说法正确吗?请说明理由

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在平面直角坐标系中,已知直线y=kx+6与x轴、y轴分别交于A,B两点,且△ABO的面积为12.

(1)求k的值;

(2)若点P为直线AB上的一动点,P点运动到什么位置时,△PAO是以OA为底的等腰三角形?求出此时点P的坐标;

(3)在(2)的条件下,连接PO,△PBO是等腰三角形吗?如果是,试说明理由;如果不是,请在线段AB上求一点C,使得△CBO是等腰三角形.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】下列说法正确的是(
A.﹣1的相反数是1
B.﹣1的倒数是1
C.﹣1的平方根是1
D.﹣1的立方根是1

查看答案和解析>>

同步练习册答案