【题目】如图,△ACB和△DCE均为等腰三角形,点A,D,E在同一直线上,连接BE.
(1)如图1,若∠CAB=∠CBA=∠CDE=∠CED=50°
①求证:AD=BE;
②求∠AEB的度数.
(2)如图2,若∠ACB=∠DCE=120°,CM为△DCE中DE边上的高,BN为△ABE中AE边上的高,试证明:AE=CM+BN.
【答案】(1)①证明见解析;②80°;(2)证明见解析.
【解析】
试题分析:(1)①通过角的计算找出∠ACD=∠BCE,再结合△ACB和△DCE均为等腰三角形可得出“AC=BC,DC=EC”,利用全等三角形的判定(SAS)即可证出△ACD≌△BCE,由此即可得出结论AD=BE;
②结合①中的△ACD≌△BCE可得出∠ADC=∠BEC,再通过角的计算即可算出∠AEB的度数;
(2)根据等腰三角形的性质结合顶角的度数,即可得出底角的度数,利用(1)的结论,通过解直角三角形即可求出线段AD、DE的长度,二者相加即可证出结论.
试题解析:(1)①证明:∵∠CAB=∠CBA=∠CDE=∠CED=50°,∴∠ACB=∠DCE=180°﹣2×50°=80°.
∵∠ACB=∠ACD+∠DCB,∠DCE=∠DCB+∠BCE,∴∠ACD=∠BCE.
∵△ACB和△DCE均为等腰三角形,∴AC=BC,DC=EC.
在△ACD和△BCE中,∵AC=BC,∠ACD=∠BCE,DC=EC,∴△ACD≌△BCE(SAS),∴AD=BE.
②解:∵△ACD≌△BCE,∴∠ADC=∠BEC.
∵点A,D,E在同一直线上,且∠CDE=50°,∴∠ADC=180°﹣∠CDE=130°,∴∠BEC=130°.
∵∠BEC=∠CED+∠AEB,且∠CED=50°,∴∠AEB=∠BEC﹣∠CED=130°﹣50°=80°.
(2)证明:∵△ACB和△DCE均为等腰三角形,且∠ACB=∠DCE=120°,∴∠CDM=∠CEM=×(180°﹣120°)=30°.
∵CM⊥DE,∴∠CMD=90°,DM=EM.
在Rt△CMD中,∠CMD=90°,∠CDM=30°,∴DE=2DM=2×=CM.
∵∠BEC=∠ADC=180°﹣30°=150°,∠BEC=∠CEM+∠AEB,∴∠AEB=∠BEC﹣∠CEM=150°﹣30°=120°,∴∠BEN=180°﹣120°=60°.
在Rt△BNE中,∠BNE=90°,∠BEN=60°,∴BE==BN.
∵AD=BE,AE=AD+DE,∴AE=BE+DE=CM+BN.
科目:初中数学 来源: 题型:
【题目】如图,在同一平面内,将△ABC绕点A旋转到△AED的位置,若AE⊥BC,∠ADC=65°,则∠ABC的度数为( )
A.30°
B.40°
C.50°
D.60°
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】某厂商投产一种新型电子产品,每件制造成本为18元,试销过程中发现,每月销售量y(万件)与销售单价x(元)之间的关系可以近似地看作一次函数y=-2x+100.(利润=售价-制造成本)
(1)写出每月的利润z(万元)与销售单价x(元)之间的函数关系式;
(2)当销售单价为多少元时,厂商每月能获得350万元的利润?当销售单价为多少元时,厂商每月能获得最大利润?最大利润是多少?
(3)根据相关部门规定,这种电子产品的销售单价不能高于32元,如果厂商要获得每月不低于350万元的利润,那么制造出这种产品每月的最低制造成本需要多少万元?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在平面直角坐标系中,点A、B的坐标分别为(3,2)、(﹣1,0),若将线段BA绕点B顺时针旋转90°得到线段BA′,则点A′的坐标为 .
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】某校九年级所有学生参加2011年初中毕业英语口语、听力自动化考试,我们从中随机抽取了部分学生的考试成绩,将他们的成绩进行统计后分为A、B、C、D四等,并将统计结果绘制成如下的统计图,请你结合图中所给信息解答下列问题:
(说明:A级:25分~30分;B级:20分~24分;C级:15分~19分;D级:15分以下)
(1)请把条形统计图补充完整;
(2)扇形统计图中D级所占的百分比是;
(3)扇形统计图中A级所在的扇形的圆心角度数是;
(4)若该校九年级有850名学生,请你估计全年级A级和B级的学生人数共约为人.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知:如图,点P,点Q分别代表两个小区,直线l代表两个小区中间的一条公路.根据居民出行的需要,计划在公路l上的某处设置一个公交站点.
①若考虑到小区P居住的老年人较多,计划建一个离小区P最近的车站,请在公路l上画出车站的位置(用点M表示);
②若考虑到修路的费用问题,希望车站的位置到小区P和小区Q的距离之和最小,请在公路l上画出车站的位置(用点N表示).
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com