【题目】某公司研发了一款成本为50元的新型玩具,投放市场进行试销售.其销售单价不低于成本,按照物价部门规定,销售利润率不高于90%,市场调研发现,在一段时间内,每天销售数量y(个)与销售单价x(元)符合一次函数关系,如图所示:
(1)根据图象,直接写出y与x的函数关系式;
(2)该公司要想每天获得3000元的销售利润,销售单价应定为多少元
(3)销售单价为多少元时,每天获得的利润最大,最大利润是多少元?
【答案】(1)y=﹣2x+260;(2)销售单价为80元;(3)销售单价为90元时,每天获得的利润最大,最大利润是3200元.
【解析】
(1)由待定系数法可得函数的解析式;
(2)根据利润等于每件的利润乘以销售量,列方程可解;
(3)设每天获得的利润为w元,由题意得二次函数,写成顶点式,可求得答案.
(1)设y=kx+b(k≠0,b为常数)
将点(50,160),(80,100)代入得
解得
∴y与x的函数关系式为:y=﹣2x+260
(2)由题意得:(x﹣50)(﹣2x+260)=3000
化简得:x2﹣180x+8000=0
解得:x1=80,x2=100
∵x≤50×(1+90%)=95
∴x2=100>95(不符合题意,舍去)
答:销售单价为80元.
(3)设每天获得的利润为w元,由题意得
w=(x﹣50)(﹣2x+260)
=﹣2x2+360x﹣13000
=﹣2(x﹣90)2+3200
∵a=﹣2<0,抛物线开口向下
∴w有最大值,当x=90时, w最大值=3200
答:销售单价为90元时,每天获得的利润最大,最大利润是3200元.
科目:初中数学 来源: 题型:
【题目】如图,在△ABC中,BD平分∠ABC,
(1)按如下步骤作图:(保留作图痕迹)
第一步,分别以点B、D为圆心,以大于BD的长为半径在BD两侧作弧,交于两点M、N;
第二步,连接MN分别交AB,BC于点E、F;
第三步,连接DE,DF.
(2)求证:四边形BEDF是菱形;
(3)若AD=6,BF=4,CD=3,求AE的长.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知平行四边形ABCD中,对角线AC、BD相交于O.则下列说法准确的是( )
A.当时,平行四边形ABCD为矩形
B.当时,平行四边形ABCD为正方形
C.当时,平行四边形ABCD为菱形
D.当时,平行四边形ABCD为菱形
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】在如图所示7×6的正方形网格中,A(2,0),B(3,2),C(4,2),请按要求解答下列问题
(1)画出△ABO向右平移4个单位长度得到△A1B1O1,点A的对应点A1的坐标为 ;
(2)画出△ABO绕点C(4,2)顺时针旋转90°得到△A2B2O2,点A的对应点A2的坐标为 ;
(3)△A1B1O1绕点Q旋转90°可以和△A2B2O2完全重合,请直接写出点Q的坐标为 .
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知:二次函数 中的和满足下表:
… | 0 | 1 | 2 | 3 | … | ||
… | 3 | 0 | 0 | m | … |
(1) 观察上表可求得的值为________;
(2) 试求出这个二次函数的解析式;
(3) 若点A(n+2,y1),B(n,y2)在该抛物线上,且y1>y2,请直接写出n的取值范围.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,AC是⊙O的直径,点B,D在⊙O上,点E在⊙O外,∠EAB=∠D=30°.
(1)∠C的度数为 ;
(2)求证:AE是⊙O的切线;
(3)当AB=3时,求图中阴影部分的面积(结果保留根号和π).
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】在△ABC中,AB=4cm,BC=8cm,点P从点A开始沿AB边向点B以1cm/s的速度移动,点Q从点B开始沿BC边向点C以2cm/s的速度移动,如果P、Q分别从A、B同时出发,经几秒后,点P、B、Q构成的三角形△PBQ与△ABC相似?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】某村2016年的人均收入为20000元,2018年的人均收入为24200元
(1)求2016年到2018年该村人均收入的年平均增长率;
(2)假设2019年该村人均收入的增长率与前两年的年平均增长率相同,请你预测2019年村该村的人均收入是多少元?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】抛物线经过点,交轴于,两点,点是第一象限内抛物线上一动点.
(1)直接写出抛物线的解析式;
(2)如图1,已知直线的解析式为,过点作直线的垂线,垂足为,当时,求点的坐标;
(3)如图2,当时,求点的坐标.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com