精英家教网 > 初中数学 > 题目详情

【题目】将一副三角板按如图所示的方式摆放,其中△ABC为含有45°角的三角板,直线AD是等腰直角三角板的对称轴,且斜边上的点D为另一块三角板DMN的直角顶点,DMDN分别交ABAC于点EF.则下列四个结论:BDADCD;②△AED≌△CFD;③BE+CFEF;④S四边形AEDFBC2.其中正确结论是_____(填序号).

【答案】①②

【解析】

根据等腰直角三角形的性质可得AD=CD=BD,∠CAD=∠B=45°,故①正确;根据同角的余角相等求出∠CDF=∠ADE,然后利用“ASA”证明△ADE≌△CDF,判断出②,根据全等三角形的对应边相等,可得DE=DF=AF=AE,利用三角形的任意两边之和大于第三边,可得BE+CF>EF,判断出③,根据全等三角形的面积相等,可得S△ADF=S△BDE,从而求出四边形AEDF的面积,判断出④.

∵∠B=45°,AB=AC

∴点D为BC的中点,

∴AD=CD=BD

故①正确;

由AD⊥BC,∠BAD=45°

可得∠EAD=∠C

∵∠MDN是直角

∴∠ADF+∠ADE=∠CDF+∠ADF=∠ADC=90°

∴∠ADE=∠CDF

∴△ADE≌△CDF(ASA)

故②正确;

∴DE=DF,AE=CF,

∴AF=BE

∴BE+AE=AF+AE

∴AE+AF>EF

故③不正确;

由△ADE≌△CDF可得S△ADF=S△BDE

∴S四边形AEDF=S△ACD=×AD×CD=×BC×BC=BC2

故④不正确.

故答案为:①②.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】88层的金茂大厦的电梯上,有显示楼层的液晶屏,如图,可显示01,02,…,88,由于屏幕受到损坏,显示左边数字的7根线段中有1根不能亮了,显示右边数字的7根线段中有3根不能亮了。请问:电梯在运行的过程中,最多还有 _____个楼层的数字显示是正确的

(说明)数字0、1、2、3、4、5、6、7、8、9显示方式如下图所示

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】下列结论:w

①若a+b+c=0,且abc≠0,则方程a+bx+c=0的解是x=1;

②若a(x﹣1)=b(x﹣1)有唯一的解,则a≠b;

③若b=2a,则关于x的方程ax+b=0(a≠0)的解为x=﹣

④若a+b+c=1,且a≠0,则x=1一定是方程ax+b+c=1的解;

其中结论正确个数有( )

A.4个 B.3个 C.2个 D.1个

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】数轴是初中数学教材中数形结合的第一个实例,它包括原点,正方向和长度单位三要素,每一个实数都可以用数轴上的一个点来表示.

数轴上某一个点所对应的数为,另一个点对应的数为,则这两点之间的距离为________;

数轴上的数对应的点为,点位于点的右边,距个长度单位,为线段上的一点,,电子蚂蚁分别从同时出发,相向而行,的速度为个长度单位/秒,的速度为个长度单位/秒.

①当点距离相同时,求运动时间

②若电子蚂蚁通过秒后与电子蚂蚁相遇,求的值.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在平行四边形ABCD中,AB=2AD, AH⊥BC于点H,ECD的中点,连接AE、 BE、HE.

(1)求证: AE⊥BE

(2)求证:∠DEH=3 ∠ EHC

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】任何一个正整数n都可以进行这样的分解:np×qpq是正整数,且pq).如果p×qn的所有这种分解中两因数之差的绝对值最小,我们就称p×qn的最佳分解,并且规定Fn)=.例如18=1×18=2×9=3×6,这时就有F(18)=.请解答下列问题:

(1)计算:F(24);

(2)n为正整数时,求证:Fn3+2n2+n)=

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】按下列程序计算,把答案填写在表格内,然后观察有什么规律,想一想:为什么会有这个规律?

(1)填写表内空格:

输入

-3

-2

-1

0

输出答案

9

(2)发现的规律是:输入数据x,则输出的答案是__________;

(3)为什么会有这个规律?请你说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图是某月的月历,用带阴影的方框任意框九个数。

1)图中带阴影的方框中的9个数之和与方框正中心的数有什么关系?请说明你的理由?

2)若这9个数之和是81,你能说出这9个日期吗?只要回答能或不能,且说明为什么?

3)这9个数之和可能会是100吗?如果可能,请计算出这9个日期,如果不可能,请说明为什么?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,直线L:y=-x+2x轴、y轴分别交于A、B两点,在y轴上有一点C(0,4),动点MA点以每秒1个单位的速度沿x轴向左移动.

(1)求A、B两点的坐标;

(2)△COM的面积SM的移动时间t之间的函数关系式;

(3)当t为何值时△COM≌△AOB,并求此时M点的坐标.

查看答案和解析>>

同步练习册答案