精英家教网 > 初中数学 > 题目详情

【题目】龟兔首次赛跑之后,输了比赛的兔子没有气馁,总结反思后,和乌龟约定再赛一场.图中的函数图象刻画了龟兔再次赛跑的故事(x表示乌龟从起点出发所行的时间,y1表示乌龟所行的路程,y2表示兔子所行的路程).有下列说法:①龟兔再次赛跑的路程为1 000米;②兔子和乌龟同时从起点出发;③乌龟在途中休息了10分钟.其中正确的说法是_________________(把你认为正确说法的序号都填上)

【答案】①③

【解析】

通过认真分析函数图象就可以就可以得出龟兔赛跑的路程,各自出发的时间等,由图象的数据分析就可以得出结论.

由函数图象,得

龟兔再次赛跑的路程为1 000米,兔子子乌龟出发40分钟后出发的,乌龟在途中休息了10分钟,

故①③正确,

故答案为:①③.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】亮亮和颖颖住在同一幢住宅楼,两人准备用测量影子的方法测算其楼高,但恰逢阴天,于是两人商定改用下面方法:如图,亮亮蹲在地上,颖颖站在亮亮和楼之间,两人适当调整自己的位置,当楼的顶部颖颖的头顶及亮亮的眼睛恰在一条直线上时,两人分别标定自己的位置然后测出两人之间的距离颖颖与楼之间的距离在一条直线上),颖颖的身高亮亮蹲地观测时眼睛到地面的距离你能根据以上测量数据帮助他们求出住宅楼的高度吗?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在四边形中,的平分线交于点的平分线交于点,交于点,且

1)求证:四边形是平行四边形;

2)若,求线段的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】有一块矩形木板,木工采用如图的方式,在木板上截出两个面积分别为18dm232dm2的正方形木板.

1)求剩余木料的面积.

2)如果木工想从剩余的木料中截出长为1.5dm,宽为ldm的长方形木条,最多能截出   块这样的木条.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】夏季空调销售供不应求,某空调厂接到一份紧急订单,要求在10天内(含10天)完成任务,为提高生产效率,工厂加班加点,接到任务的第一天就生产了空调42台,以后每天生产的空调都比前一天多2台,由于机器损耗等原因,当日生产的空调数量达到50台后,每多生产一台,当天生产的所有空调,平均每台成本就增加20元.
(1)设第x天生产空调y台,直接写出y与x之间的函数解析式,并写出自变量x的取值范围.
(2)若每台空调的成本价(日生产量不超过50台时)为2000元,订购价格为每台2920元,设第x天的利润为W元,试求W与x之间的函数解析式,并求工厂哪一天获得的利润最大,最大利润是多少.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】(1) 发现:

如图1,点是线段外一动点,且.当点位于 时,线段的长取得最大值;最大值为 (用含的式子表示)

(2)应用:

如图2,点为线段外一动点,,分别以为边在外部作等边和等边,连接

①求证:

②直接写出线段长的最大值.

(3)拓展:

如图3,在平面直角坐标系中,点,点,点为线段外一动点,,请直接写出线段长的最大值及此时点的坐标.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】定义:有一个内角为90°,且对角线相等的四边形称为准矩形.

(1)①如图1,准矩形ABCD中,∠ABC=90°,若AB=2,BC=3,则BD=   

②如图2,直角坐标系中,A(0,3),B(5,0),若整点P使得四边形AOBP是准矩形,则点P的坐标是   ;(整点指横坐标、纵坐标都为整数的点)

(2)如图3,正方形ABCD中,点E、F分别是边AD、AB上的点,且CF⊥BE,求证:四边形BCEF是准矩形;

(3)已知,准矩形ABCD中,∠ABC=90°,∠BAC=60°,AB=2,当△ADC为等腰三角形时,请直接写出这个准矩形的面积是   

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,AB是⊙O的弦,OP⊥OA交AB于点P,过点B的直线交OP的延长线于点C,且CP=CB.

(1)求证:BC是⊙O的切线;
(2)若⊙O的半径为3,OP=1,求BC的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图示,若△ABC内一点P满足∠PAC=∠PBA=∠PCB,则点P为△ABC的布洛卡点.三角形的布洛卡点是法国数学家和教育家克洛尔于1816年首次发现,但他的发现并未被当时的人们所注意,1875年,布洛卡点被一个数学爱好者法国军官布洛卡重新发现,并用他的名字命名.问题:已知在等腰直角三角形DEF中,∠EDF=90°,若点Q为△DEF的布洛卡点,DQ=1,则EQ+FQ=

查看答案和解析>>

同步练习册答案