精英家教网 > 初中数学 > 题目详情
如图,已知以E(3,0)为圆心,以5为半径的⊙E与x轴交于A,B两点,与y轴交于C点,抛物线y=ax2+bx+c经过A,B,C三点,顶点为F.
(1)求A,B,C三点的坐标;
(2)求抛物线的解析式及顶点F的坐标;
(3)已知M为抛物线上一动点(不与C点重合),试探究:
①使得以A,B,M为顶点的三角形面积与△ABC的面积相等,求所有符合条件的点M的坐标;
②若探究①中的M点位于第四象限,连接M点与抛物线顶点F,试判断直线MF与⊙E的位置关系,并说明理由.
(1)∵以E(3,0)为圆心,以5为半径的⊙E与x轴交于A,B两点,
∴A(-2,0),B(8,0).
如解答图所示,连接CE.
在Rt△OCE中,OE=AE-OA=5-2=3,CE=5,
由勾股定理得:OC=
CE2-OE2
=
52-32
=4.
∴C(0,-4).

(2)∵点A(-2,0),B(8,0)在抛物线上,
∴可设抛物线的解析式为:y=a(x+2)(x-8).
∵点C(0,-4)在抛物线上,
∴-4=a×2×-8,解得a=
1
4

∴抛物线的解析式为:y=
1
4
(x+2)(x-8)=
1
4
x2-
3
2
x-4=
1
4
(x-3)2-
25
4

∴顶点F的坐标为(3,-
25
4
).

(3)①∵△ABC中,底边AB上的高OC=4,
∴若△ABC与△ABM面积相等,则抛物线上的点M须满足条件:|yM|=4.
(I)若yM=4,则
1
4
x2-
3
2
x-4=4,
整理得:x2-6x-32=0,解得x=3+
41
或x=3-
41

∴点M的坐标为(3+
41
,4)或(3-
41
,4);
(II)若yM=-4,则
1
4
x2-
3
2
x-4=-4,
整理得:x2-6x=0,解得x=6或x=0(与点C重合,故舍去).
∴点M的坐标为(6,-4).
综上所述,满足条件的点M的坐标为:(3+
41
,4),(3-
41
,4)或(6,-4).
②直线MF与⊙E相切.理由如下:
由题意可知,M(6,-4).
如解答图所示,连接EM,MF,过点M作MG⊥对称轴EF于点G,
则MG=3,EG=4.
在Rt△MEG中,由勾股定理得:ME=
MG2+EG2
=
32+42
=5,
∴点M在⊙E上.
由(2)知,顶点F的坐标(3,-
25
4
),∴EF=
25
4

∴FG=EF-EG=
9
4

在Rt△MGF中,由勾股定理得:MF=
MG2+FG2
=
32+(
9
4
)
2
=
15
4

在△EFM中,∵EM2+MF2=52+(
15
4
2=(
25
4
2=EF2
∴△EFM为直角三角形,∠EMF=90°.
∵点M在⊙E上,且∠EMF=90°,
∴直线MF与⊙E相切.
练习册系列答案
相关习题

科目:初中数学 来源:不详 题型:解答题

已知抛物线y=ax2+bx+c(a≠0)与x轴交于不同的两点A(x1,0)和B(x2,0),与y轴的正半轴交于点C.如果x1、x2是方程x2-x-6=0的两个根(x1<x2),且△ABC的面积为
15
2

(1)求此抛物线的解析式;
(2)求直线AC和BC的方程;
(3)如果P是线段AC上的一个动点(不与点A、C重合),过点P作直线y=m(m为常数),与直线BC交于点Q,则在x轴上是否存在点R,使得△PQR为等腰直角三角形?若存在,求出点R的坐标;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图,将一块含30°角的学生用三角板放在平面直角坐标系中,使顶点A、B分别放置在y轴、x轴上,已知AB=2,∠ABO=∠ACB=30°.
(1)求点A、B、C的坐标;
(2)求过A,B,C三点的抛物线解析式;
(3)在(2)中的抛物线上是否存在点P,使△PAB的面积等于△ABC的面积?若不存在,请说明理由;若存在,请你求出点P的坐标.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图,在平面直角坐标系中,直角梯形ABCO的边OC落在x轴的正半轴上,且ABOC,BC⊥OC,AB=4,BC=6,OC=8.正方形ODEF的两边分别落在坐标轴上,且它的面积等于直角梯形ABCO面积.将正方形ODEF沿x轴的正半轴平行移动,设它与直角梯形ABCO的重叠部分面积为S.
(1)分析与计算:求正方形ODEF的边长;
(2)操作与求解:
①正方形ODEF平行移动过程中,通过操作、观察,试判断S(S>0)的变化情况是______;
A、逐渐增大 B、逐渐减少 C、先增大后减少 D、先减少后增大
②当正方形ODEF顶点O移动到点C时,求S的值;
(3)探究与归纳:
设正方形ODEF的顶点O向右移动的距离为x,求重叠部分面积S与x的函数关系式.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

(t007•呼伦贝尔)某车间有t0名工人,每人每天可加工甲种零件5个或乙种零件4个,每加工一个甲种零件可获利16元,每加工一个乙种零件可获利t4元.现要求加工甲种零件的人数不少于加工乙种零件人数的t倍,设每天所获利润为y元,那么多少人加工甲种零件时,每天所获利润最大,每天所获最大利润是多少元?

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图,在一块三角形区域ABC中,∠C=90°,边AC=8,BC=6,现要在△ABC内建造一个矩形水池DEFG,如图的设计方案是使DE在AB上.
(1)求△ABC中AB边上的高h;
(2)设DG=x,当x取何值时,水池DEFG的面积最大?
(3)实际施工时,发现在AB上距B点1.85的M处有一棵大树,问:这棵大树是否位于最大矩形水池的边上?如果在,为保护大树,请设计出另外的方案,使三角形区域中欲建的最大矩形水池能避开大树.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

已知在平面直角坐标系xOy中,抛物线y=ax2+2x经过点A(4,0),顶点为B.
(1)求顶点B的坐标;
(2)将这条抛物线向左平移后与y轴相交于点C,此时点A移动到点D的位置,且∠DBA=∠CBO,求平移后抛物线的表达式.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

某商店经销一种销售成本为每千克40元的水产品,据市场分析,若按每千克50元销售一个月能售出500千克;销售单价每涨1元,月销售量就减少10千克,商店想在月销售成本不超过1万元的情况下,使得月销售利润达到8000元,销售单价应定为多少?

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

我市某镇的一种特产由于运输原因,长期只能在当地销售.当地政府对该特产的销售投资收益为:每投入x万元,可获得利润P=-
1
100
(x-60)2+41
(万元).当地政府拟在“十二•五”规划中加快开发该特产的销售,其规划方案为:在规划前后对该项目每年最多可投入100万元的销售投资,在实施规划5年的前两年中,每年都从100万元中拨出50万元用于修建一条公路,两年修成,通车前该特产只能在当地销售;公路通车后的3年中,该特产既在本地销售,也在外地销售.在外地销售的投资收益为:每投入x万元,可获利润Q=-
99
100
(100-x)2+
294
5
(100-x)+160
(万元).
(1)若不进行开发,求5年所获利润的最大值是多少?
(2)若按规划实施,求5年所获利润(扣除修路后)的最大值是多少?
(3)根据(1)、(2),该方案是否具有实施价值?

查看答案和解析>>

同步练习册答案