分析 设CF=x,在Rt△ACF和Rt△BCF中,分别用CF表示AC、BC的长度,然后根据AC-BC=1200,求得x的值,用h-x即可求得最高海拔.
解答 解:设CF=x,
在Rt△ACF和Rt△BCF中,
∵∠BAF=30°,∠CBF=45°,
∴BC=CF=x,
$\frac{CF}{AC}$=tan30°,
即AC=$\sqrt{3}$x,
∵AC-BC=1464米,
∴$\sqrt{3}$x-x=1464,
解得:x=732($\sqrt{3}$+1),
则DF=h-x=2362-732($\sqrt{3}$+1)≈362(米).
答:钓鱼岛的最高海拔高度约362米.
点评 本题考查了解直角三角形的应用,解答本题的关键是根据俯角构造直角三角形求出AC、BC的长度,难度一般.
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:填空题
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:填空题
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com