分析 (1)过P作PE⊥AB,设CP=2t,根据角平分线的性质和勾股定理进行解答即可;
(2)分类讨论:当CP=CB时,△BCP为等腰三角形,若点P在AC上得t=3(s),若点P在AB上,则t=5.4s;当PC=PB时,△BCP为等腰三角形,作PD⊥BC于D,根据等腰三角形的性质得BD=CD,则可判断PD为△ABC的中位线,则AP=$\frac{1}{2}$AB=$\frac{5}{2}$,易得t=$\frac{13}{2}$(s);当BP=BC=3时,△BCP为等腰三角形,则AP=AB-BP=2,易得t=6(s);
(3)分两种情况讨论:当P点在AC上,Q在AB上,则PC=t,BQ=2t-3,t+2t-3+3=6;当P点在AB上,Q在AC上,则AC=t-4,AQ=2t-8,t-4+2t-8=6,分别求得t的值即可.
解答 解:(1)如图1,过P作PE⊥AB,
∵点P恰好在∠BAC的角平分线上,且∠C=90°,AB=5cm,BC=3cm,
∴CP=EP,
∴△ACP≌△AEP(HL),
∴AC=4cm=AE,BE=5-4=1,
设CP=x,则BP=3-x,PE=x,
∴Rt△BEP中,BE2+PE2=BP2,
即12+x2=(3-x)2
解得x=$\frac{4}{3}$,
∴BP=3-$\frac{4}{3}$=$\frac{5}{3}$,
∴CA+AB+BP=4+5+$\frac{5}{3}$=$\frac{32}{3}$,
∴t=$\frac{32}{3}$÷1=$\frac{32}{3}$(s);
(2)如图2,当CP=CB时,△BCP为等腰三角形,
若点P在CA上,则1t=3,
解得t=3(s);
如图3,当BP=BC=3时,△BCP为等腰三角形,
∴AP=AB-BP=2,
∴t=(4+2)÷1=6(s);
如图4,若点P在AB上,CP=CB=3,作CD⊥AB于D,则根据面积法求得CD=$\frac{12}{5}$,
在Rt△BCD中,由勾股定理得,BD=$\frac{9}{5}$,
∴PB=2BD=$\frac{18}{5}$
∴CA+AP=4+5-$\frac{18}{5}$=5.4,
此时t=5.4÷1=5.4(s);
如图5,当PC=PB时,△BCP为等腰三角形,作PD⊥BC于D,则BD=CD,
∴PD为△ABC的中位线,
∴AP=BP=$\frac{1}{2}$AB=$\frac{5}{2}$,
∴t=(4+$\frac{5}{2}$)÷1=$\frac{13}{2}$(s);
综上所述,t为3s或5.4s或6s或$\frac{13}{2}$s时,△BCP为等腰三角形;
(3)如图6,当P点在AC上,Q在AB上,则PC=t,BQ=2t-3,
∵直线PQ把△ABC的周长分成相等的两部分,
∴t+2t-3+3=6,
∴t=2(s);
如图7,当P点在AB上,Q在AC上,则AP=t-4,AQ=2t-8,
∵直线PQ把△ABC的周长分成相等的两部分,
∴t-4+2t-8=6,
∴t=6(s);
综上所述,当t=2或6秒时,直线PQ把△ABC的周长分成相等的两部分.
点评 本题考查了等腰三角形的判定与性质、角平分线的性质、勾股定理、三角形面积的计算以及全等三角形的判定与性质等知识的综合应用,熟练掌握等腰三角形的判定与性质,进行分类讨论是解决问题的关键.解题时注意,需要作辅助线构造直角三角形.
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:选择题
A. | AD=CD | B. | ∠DAP=∠DCP | C. | ∠ADB=∠BDC | D. | PD=BD |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com