【题目】写出下列命题的已知、求证,并完成证明过程.
命题:如果一个三角形的两条边相等,那么两条边所对的角也相等(简称:“等边对等角”.)
(1)已知: .
求证: .
(2)证明:“等边对等角”
科目:初中数学 来源: 题型:
【题目】模型介绍:古希腊有一个著名的“将军饮马问题”,大致内容如下:古希腊一位将军,每天都要巡查河岸侧的两个军营A、B,他总是先去A营,再到河边饮马,之后再去B营,如图 ①,他时常想,怎么走才能使每天的路程之和最短呢?
大数学家海伦曾用轴对称的方法巧妙的解决了这问题
如图②,作B关于直线l的对称点B′,连接AB′与直线l交于点C,点C就是所求的位置.
请你在下列的阅读、应用的过程中,完成解答.
(1)理由:如图③,在直线L上另取任一点C′,连接AC′,BC′,B′C′,
∵直线l是点B,B′的对称轴,点C,C′在l上
∴CB= , C′B=
∴AC+CB=AC+CB′= .
在△AC′B′中,∵AB′<AC′+C′B′,∴AC+CB<AC′+C′B′即AC+CB最小
归纳小结:
本问题实际是利用轴对称变换的思想,把A、B在直线的同侧问题转化为在直线的两侧,从而可利用“两点之间线段最短”,即转化为“三角形两边之和大于第三边”的问题加以解决(其中C为AB′与l的交点,即A、C、B′三点共线).
本问题可拓展为“求定直线上一动点与直线外两定点的距离和的最小值”问题的数学模型.
(2)模型应用
如图 ④,正方形ABCD的边长为2,E为AB的中点,F是AC上一动点.
求EF+FB的最小值
分析:解决这个问题,可以借助上面的模型,由正方形的对称性可知,B与D关于直线AC对称,连结ED交AC于F,则EF+FB的最小值就是线段的长度,EF+FB的最小值是 .
如图⑤,已知⊙O的直径CD为4,∠AOD的度数为60°,点B是 的中点,在直径CD上找一点P,使BP+AP的值最小,则BP+AP的最小值是;
如图⑥,一次函数y=﹣2x+4的图象与x,y轴分别交于A,B两点,点O为坐标原点,点C与点D分别为线段OA,AB的中点,点P为OB上一动点,求:PC+PD的最小值,并写出取得最小值时P点坐标.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,已知抛物线y=ax2+bx+c与x轴的一个交点为A(3,0),与y轴的交点为B(0,3),其顶点为C,对称轴为x=1.
(1)求抛物线的解析式;
(2)已知点M为y轴上的一个动点,当△ABM为等腰三角形时,求点M的坐标.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,△ABC和△DEF均是边长为4的等边三角形,△DEF的顶点D为△ABC的一边BC的中点,△DEF绕点D旋转,且边DF,DE始终分别交△ABC的边AB,AC于点H,G,图中直线BC两侧的图形关于直线BC成轴对称.连结HH′,HG,GG′,H′G′,其中HH′、GG′分别交BC于点I,J.
(1)求证:△DHB∽△GDC;
(2)设CG=x,四边形HH′G′G的面积为y,
①求y关于x的函数解析式和自变量x的取值范围.
②求当x为何值时,y的值最大,最大值为多少?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知二次函数y=﹣x2+mx+n.
(1)若该二次函数的图象与x轴只有一个交点,请用含m的代数式表示n;
(2)若该二次函数的图象与x轴交于A、B两点,其中点A的坐标为(﹣1,0),AB=4,请求出该二次函数的表达式及顶点坐标.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,点E,F分别是等边△ABC中AC,AB边上的中点,以AE为边向外作等边△ADE.
(1)求证:四边形AFED是菱形;
(2)连接DC,若BC=10,求四边形ABCD的面积.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在△ABC中,AB=AC,以AB为直径的⊙O分别与BC,AC交于点D,E,过点D作⊙O的切线DF,交AC于点F.
(1)求证:DF⊥AC;
(2)若⊙O的半径为4,∠CDF=22.5°,求阴影部分的面积.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图1,将矩形ABCD沿DE折叠,使顶点A落在DC上的点A′处,然后将矩形展平,沿EF折叠,使顶点A落在折痕DE上的点G处.再将矩形ABCD沿CE折叠,此时顶点B恰好落在DE上的点H处.如图2.
(1)求证:EG=CH;
(2)已知AF= ,求AD和AB的长.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com