精英家教网 > 初中数学 > 题目详情
(2008•朝阳区二模)已知:如图,在梯形ABCD中,AD∥BC,BC=3AD.
(1)如图①,连接AC,如果三角形ADC的面积为6,求梯形ABCD的面积;
(2)如图②,E是腰AB上一点,连接CE,设△BCE和四边形AECD的面积分别为S1和S2,且2S1=3S2,求的值;
(3)如图③,AB=CD,如果CE⊥AB于点E,且BE=3AE,求∠B的度数.

【答案】分析:(1)由△ADC与△ABC等高,且BC=3AD,可得△ABC的面积是△ADC面积的三倍,所以可求得△ADC的面积,即可求得梯形ABCD的面积;
(2)可利用面积法求解,因为如果三角形的高相等,则其面积的比等于其底的比,所以可求得AE与BE的比;
(3)首先延长BA与CD,然后根据面积的关系求得△MBC是等边三角形,即可得∠B为60°.
解答:解:(1)在梯形ABCD中,
∵AD∥BC,又△ADC与△ABC等高,且BC=3AD,
∴S△ABC=3S△ADC
∵S△ADC=6,
∴S梯形ABCD=S△ABC+S△ACD=4S△ADC=24.

(2)方法1:连接AC,如图①,设△AEC的面积为S3,则△ACD的面积为S2-S3

由(1)和已知可得
解得:S1=4S3

∵△AEC与△BEC等高,

方法2:延长BA、CD相交于点F,如图②
∵AD∥BC,
∴△FAD∽△FBC,

设S△FAD=S3=a,则S△FBC=9a,S1+S2=8a,
又∵2S1=3S2
a,a,S3=a.
∵△EFC与△CEB等高,

设FE=7k,则BE=8k,FB=15k,
∴FA=FB=5k.
∴AE=7k-5k=2k.


(3)延长BA、CD相交于点M.如图③,
∵AD∥BC,
∴△MAD∽△MBC,

∴MB=3MA.设MA=2x,则MB=6x.
∴AB=4x.
∵BE=3AE,
∴BE=3x,AE=x.
∴BE=EM=3x,E为MB的中点.
又∵CE⊥AB,
∴CB=MC.
又∵MB=MC,
∴△MBC为等边三角形.
∴∠B=60°.
点评:此题考查了如果三角形的高相等,则面积比等于其底边的比.解此题的关键是准确的作出辅助线与数形结合思想的应用.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

(2008•朝阳区二模)如图,△AOC在平面直角坐标系中,∠AOC=90°,且O为坐标原点,点A、C分别在坐标轴上,AO=4,OC=3,将△AOC绕点C按逆时针方向旋转,旋转后的三角形记为△CA′O′.
(1)当CA边落在y轴上(其中旋转角为锐角)时,一条抛物线经过A、C两点且与直线AA′相交于x轴下方一点D,如果S△AOD=9,求这条抛物线的解析式;
(2)继续旋转△CA′O′,当以CA′为直径的⊙P与(1)中抛物线的对称轴相切时,圆心P是否在抛物线上,请说明理由.

查看答案和解析>>

科目:初中数学 来源:2011年重庆市綦江县赶水镇中中考数学模拟试卷(一)(解析版) 题型:解答题

(2008•朝阳区二模)如图,△AOC在平面直角坐标系中,∠AOC=90°,且O为坐标原点,点A、C分别在坐标轴上,AO=4,OC=3,将△AOC绕点C按逆时针方向旋转,旋转后的三角形记为△CA′O′.
(1)当CA边落在y轴上(其中旋转角为锐角)时,一条抛物线经过A、C两点且与直线AA′相交于x轴下方一点D,如果S△AOD=9,求这条抛物线的解析式;
(2)继续旋转△CA′O′,当以CA′为直径的⊙P与(1)中抛物线的对称轴相切时,圆心P是否在抛物线上,请说明理由.

查看答案和解析>>

科目:初中数学 来源:2011年河北省承德市承德县中考数学模拟试卷(一)(解析版) 题型:解答题

(2008•朝阳区二模)如图,△AOC在平面直角坐标系中,∠AOC=90°,且O为坐标原点,点A、C分别在坐标轴上,AO=4,OC=3,将△AOC绕点C按逆时针方向旋转,旋转后的三角形记为△CA′O′.
(1)当CA边落在y轴上(其中旋转角为锐角)时,一条抛物线经过A、C两点且与直线AA′相交于x轴下方一点D,如果S△AOD=9,求这条抛物线的解析式;
(2)继续旋转△CA′O′,当以CA′为直径的⊙P与(1)中抛物线的对称轴相切时,圆心P是否在抛物线上,请说明理由.

查看答案和解析>>

科目:初中数学 来源:2011年重庆市綦江县赶水镇中中考数学模拟试卷(一)(解析版) 题型:填空题

(2008•朝阳区二模)已知两圆的半径分别为3cm和4cm,如果这两个圆的圆心距为10cm,那么这两个圆的位置关系是    

查看答案和解析>>

同步练习册答案