精英家教网 > 初中数学 > 题目详情
如图,已知直线l:y=及抛物线C:y=ax2+bx+c(a≠0),且抛物线C图象上部分点的对应值如下表:
-2-1 2 3
 y-5 0 3 4 3 0-5
(1)求抛物线C对应的函数解析式;
(2)求直线l与抛物线C的交点A、B的坐标;
(3)若动点M在直线l上方的抛物线C上移动,求△ABM的边AB上的高h的最大值.

【答案】分析:(1)可任选三点坐标代入抛物线的解析式中进行求解即可.(可选其中与x轴的交点,用交点式二次函数通式设抛物线的解析式求解.)
(2)联立直线l和抛物线的解析式即可求出A、B的坐标.
(3)本题可通过三角形ABM的面积来求解.由于三角形AMB的面积无法直接求出,因此可将其分割成其他图形面积的和差来求解.过M作MN∥y轴交AB于N,那么三角形ABM的面积就分成了三角形AMN和BMN两部分,可以MN为底,以AB两点的横坐标的差的绝对值为高来求三角形ABM的面积,MN是抛物线的函数中与直线AB函数值的差,由此可得出关于三角形AMB的面积与M点横坐标的函数关系式.然后根据三角形ABM的面积的不同表示方法求出关于h和M点横坐标的函数关系式,根据函数的性质即可求出h的最大值.
解答:解:(1)∵抛物线C:y=ax2+bx+c(a≠0)过(-1,0),(0,3),(3,0);
∴可设二次函数的解析式为y=a(x+1)(x-3),
则有:3=a(0+1)(0-3),a=-1;
∴抛物线C对应的函数关系式为:y=-(x+1)(x-3)=-x2+2x+3.

(2)由
得:

∴A(-,-)和B(2,3).

(3)设点M(x,-x2+2x+3),其中-<x<3,过点M作y轴的平行线交直线AB于点N,则N(x,x).
且|MN|=-x2+2x+3-x=-x2+x+3
∴S△ABM=S△AMN+S△BMN=|MN|(x+)+|MN|(2-x)
=|MN|(+x+2-x)
=-x2+x+
由勾股定理得:
|AB|===
又∵S△ABM=|AB|•h,
וh=-x2+x+
∴h=(-x2+x+3),
故h=-(x-2+
∴当x=(-<3)时,h的最大值为
点评:本题主要考查了二次函数解析式的确定、函数图象交点、图形面积的求法等知识点.综合性强,难度较高.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

16、如图,已知直线AB和CD相交于点O,∠COE是直角,OF平分∠AOE.
(1)写出∠AOC与∠BOD的大小关系:
相等
,判断的依据是
等角的补角相等

(2)若∠COF=35°,求∠BOD的度数.

查看答案和解析>>

科目:初中数学 来源: 题型:

5、如图,已知直线l1∥l2,AB⊥CD,∠1=30°,则∠2的度数为(  )

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网如图,已知直线l1y=
2
3
x+
8
3
与直线 l2:y=-2x+16相交于点C,直线l1、l2分别交x轴于A、B两点,矩形DEFG的顶点D、E分别在l1、l2上,顶点F、G都在x轴上,且点G与B点重合,那么S矩形DEFG:S△ABC=
 

查看答案和解析>>

科目:初中数学 来源: 题型:

(2013•怀化)如图,已知直线a∥b,∠1=35°,则∠2=
35°
35°

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,已知直线m∥n,则下列结论成立的是(  )

查看答案和解析>>

同步练习册答案