精英家教网 > 初中数学 > 题目详情
已知:在正方形ABCD中,M是边BC的中点(如图所示),E是边AB上的一个动点,MF⊥ME,交射线CD于点F,AB=4,BE=x,CF=y.
(1)求y关于x的函数解析式,并写出它的定义域.
(2)当点F在边CD上时,四边形AEFD的周长是否随点E的运动而发生变化?请说明理由.
(3)当DF=1时,求点A到直线EF的距离.

【答案】分析:(1)证△BEM∽△CMF,推出=,代入求出xy=4即可;
(2)根据勾股定理求出x+y=EF,代入即可求出答案;
(3)分为两种情况:①F在线段CD上时,求出y=3,x=,EF=x+y═,过A作AN⊥EF于N,根据面积公式求出即可;
①当F在CD的延长线上时,求出y=5,x=,EF=x+y=,过A作AN⊥EF于N,根据面积公式求出即可.
解答:解:(1)∵四边形ABCD是正方形,
∴∠B=∠C=90°,
∵EM⊥FM,
∴∠EMF=90°,
∴∠BEM+∠BME=90°,∠BME+∠CMF=90°,
∴∠BEM=∠FMC,
∴△BEM∽△CMF,
=
∵BM=CM=BC=×4=2,BE=e,CF=y,
∴xy=4
x的取值范围是0<x≤4;

(2)不变,
理由是:∵根据勾股定理得:EM2=BE2+BM2=x2+22=x2+4,FM2=y2+4,
∴EF2=EM2+FM2=x2+4+y2+4=x2+y2+8,
∵xy=4,
∴EF2=(x+y)2
∴EF=x+y,
∴四边形AEFD的周长是AE+EF+DF+AD=4-x+x+y+4-y+4=12.

(3)解:分为两种情况:①F在线段CD上时,如图备用图,
∵DC=AB=AD=4,DF=1,
∴y=4-1=3,x==,EF=x+y=3+=
过A作AN⊥EF于N,
则S△AEF=S梯形AEFD-S△ADF=(3+4-)×4-×4×1=EF×AN,
∴AN=
②当F在CD的延长线上时,如图,
∵DC=AB=AD=4,DF=1,
∴y=4+1=5,x=,EF=x+y=
过A作AN⊥EF于N,
则S△AEF=S正方形ABCD+S△ADF-S梯形BEFC=4×4+×4×1-×(+5)×4=EF×AN,
∴AN=
点评:本题考查了三角形面积、梯形面积、正方形面积,正方形性质,相似三角形的性质和判定的应用,主要考查学生综合运用性质进行推理和计算的能力.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

22、已知,在等腰△ABC中,AB=AC,分别延长BA,CA到D,E点,使DA=AB,EA=CA,则四边形BCDE是(  )

查看答案和解析>>

科目:初中数学 来源: 题型:

已知:在Rt△ABC中,∠B=90°,BC=4cm,AB=8cm,D、E、F分别为AB、AC、BC边上的中点.若P为AB边上的一个动点,PQ∥BC,且交AC于点Q,以PQ为一边,在点A的异侧精英家教网作正方形PQMN,记正方形PQMN与矩形EDBF的公共部分的面积为y.
(1)如图,当AP=3cm时,求y的值;
(2)设AP=xcm,试用含x的代数式表示y(cm2);
(3)当y=2cm2时,试确定点P的位置.

查看答案和解析>>

科目:初中数学 来源: 题型:

我们定义:“四个顶点都在三角形边上的正方形是三角形的内接正方形”.
已知:在Rt△ABC中,∠C=90°,AC=6,BC=3.
(1)如图1,四边形CDEF是△ABC的内接正方形,则正方形CDEF的边长a1
2
2

(2)如图2,四边形DGHI是(1)中△EDA的内接正方形,则第2个正方形DGHI的边长a2=
4
3
4
3
;继续在图2中的△HGA中按上述方法作第3个内接正方形;…以此类推,则第n个内接正方形的边长an=
2n
3n-1
2n
3n-1
.(n为正整数)

查看答案和解析>>

科目:初中数学 来源: 题型:

已知:在Rt△ABC中,∠C=90°∠A、∠B、∠C所对的边分别记作a、b、c.
(1)如图1,分别以△ABC的三条边为边长向外作正方形,其正方形的面积由小到大分别记作S1、S2、S3,则有S1+S2=S3
(2)如图2,分别以△ABC的三条边为直径向外作半圆,其半圆的面积由小到大分别记作S1、S2、S3,请问S1+S2与S3有怎样的数量关系,并证明你的结论;
(3)分别以直角三角形的三条边为直径作半圆,如图3所示,其面积由小到大分别记作S1、S2、S3,根据(2)中的探索,直接回答S1+S2与S3有怎样的数量关系;
(4)若Rt△ABC中,AC=6,BC=8,求出图4中阴影部分的面积.

查看答案和解析>>

科目:初中数学 来源:2001年全国中考数学试题汇编《四边形》(02)(解析版) 题型:解答题

(2001•天津)已知:在Rt△ABC中,∠B=90°,BC=4cm,AB=8cm,D、E、F分别为AB、AC、BC边上的中点.若P为AB边上的一个动点,PQ∥BC,且交AC于点Q,以PQ为一边,在点A的异侧作正方形PQMN,记正方形PQMN与矩形EDBF的公共部分的面积为y.
(1)如图,当AP=3cm时,求y的值;
(2)设AP=xcm,试用含x的代数式表示y(cm2);
(3)当y=2cm2时,试确定点P的位置.

查看答案和解析>>

同步练习册答案