精英家教网 > 初中数学 > 题目详情
如图,点P在平行四边形ABCD的CD边上,连接BP并延长与AD的延长线交于点Q.

(1)求证:△DQP∽△CBP;
(2)当△DQP≌△CBP,且AB=8时,求DP的长.
(1)见解析 (2)4

试题分析:(1)由图可知∠QPD=∠CPB(对顶角),又AD平行于BC,所以∠QDP=∠CPB,所以△DQP与△CBP相似;
(2)△DQP≌△CBP,DP=CP=CD,AB=CD=8,继而即可得出答案.
(1)证明:∵四边形ABCD是平行四边形,
∴AQ∥BC,
∴∠QDP=∠BCP,
又∠QPD=∠CPB,
∴△DQP∽△CBP;
(2)解:∵△DQP≌△CBP,
∴DP=CP=CD,
∵AB=CD=8,
∴DP=4.
点评:本题考查平行四边形、全等三角形的性质及相似三角形的判定,解题关键是对这些知识的熟练掌握,难度一般.
练习册系列答案
相关习题

科目:初中数学 来源:不详 题型:解答题

如图,已知:△ABC中,∠ABC=90°,AB=BC,延长BC到E,使得CE=2BC,取CE的中点D,连接AE、AD.求证:△ACD∽△ECA.

查看答案和解析>>

科目:初中数学 来源:不详 题型:单选题

如图,正方形ABCD的面积为1,M是AB的中点,则图中阴影部分的面积是(  )
A.B.C.D.

查看答案和解析>>

科目:初中数学 来源:不详 题型:填空题

在△ABC中,P是AB上的动点(P异于A、B),过点P的直线截△ABC,使截得的三角形与△ABC相似,我们不妨称这种直线为过点P的△ABC的相似线,简记为P(lx)(x为自然数).
(1)如图①,∠A=90°,∠B=∠C,当BP=2PA时,P(l1)、P(l2)都是过点P的△ABC的相似线(其中l1⊥BC,l2∥AC),此外,还有      条;
(2)如图②,∠C=90°,∠B=30°,当=         时,P(lx)截得的三角形面积为△ABC面积的

查看答案和解析>>

科目:初中数学 来源:不详 题型:填空题

在平面直角坐标系中,正方形ABCD的位置如图所示,点A的坐标为(1,0),点D的坐标为(0,2).延长CB交x轴于点A1,作正方形A1B1C1C;延长C1B1交x轴于点A2,作正方形A2B2C2C1…按这样的规律进行下去,第2011个正方形的面积为  

查看答案和解析>>

科目:初中数学 来源:不详 题型:填空题

如图所示,一般书本的纸张是原纸张多次对开得到的,矩形ABCD沿EF对开后,再把矩形EFCD沿MN对开,依此类推,若各种开本的矩形都相似,那么等于  

查看答案和解析>>

科目:初中数学 来源:不详 题型:单选题

如图,在正方形ABCD中,E是CD的中点,点F在BC上,且FC=BC.图中相似三角形共有(  )

A.1对                   B.2对                  C.3对                  D.4对

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

已知==,求的值.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图,ABCD中,E是CD的延长线上一点,BE与AD交于点F,DE=CD。

(1)求证:AB:CE=AF:BC;
(2)若△DEF的面积为3,求:ABCD的面积。

查看答案和解析>>

同步练习册答案