精英家教网 > 初中数学 > 题目详情
(2013•菏泽)如图,BC是⊙O的直径,A是⊙O上一点,过点C作⊙O的切线,交BA的延长线于点D,取CD的中点E,AE的延长线与BC的延长线交于点P.
(1)求证:AP是⊙O的切线;
(2)OC=CP,AB=6,求CD的长.
分析:(1)连接AO,AC(如图).欲证AP是⊙O的切线,只需证明OA⊥AP即可;
(2)利用(1)中切线的性质在Rt△OAP中利用边角关系求得∠ACO=60°.然后在Rt△BAC、Rt△ACD中利用余弦三角函数的定义知AC=2
3
,CD=4.
解答:(1)证明:连接AO,AC(如图).
∵BC是⊙O的直径,
∴∠BAC=∠CAD=90°.
∵E是CD的中点,
∴CE=DE=AE.
∴∠ECA=∠EAC.
∵OA=OC,
∴∠OAC=∠OCA.
∵CD是⊙O的切线,
∴CD⊥OC.
∴∠ECA+∠OCA=90°.
∴∠EAC+∠OAC=90°.
∴OA⊥AP.
∵A是⊙O上一点,
∴AP是⊙O的切线;

(2)解:由(1)知OA⊥AP.
在Rt△OAP中,∵∠OAP=90°,OC=CP=OA,即OP=2OA,
∴sinP=
OA
OP
=
1
2

∴∠P=30°.
∴∠AOP=60°.
∵OC=OA,
∴∠ACO=60°.
在Rt△BAC中,∵∠BAC=90°,AB=6,∠ACO=60°,
∴AC=
AB
tan∠ACO
=2
3

又∵在Rt△ACD中,∠CAD=90°,∠ACD=90°-∠ACO=30°,
∴CD=
AC
cos∠ACD
=
2
3
cos30°
=4.
点评:本题考查了切线的判定与性质、解直角三角形.注意,切线的定义的运用,解题的关键是熟记特殊角的锐角三角函数值.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

(2013•菏泽)如图,把一个长方形的纸片对折两次,然后剪下一个角,为了得到一个钝角为120° 的菱形,剪口与第二次折痕所成角的度数应为(  )

查看答案和解析>>

科目:初中数学 来源: 题型:

(2013•菏泽)如图,数轴上的A、B、C三点所表示的数分别是a、b、c,其中AB=BC,如果|a|>|b|>|c|,那么该数轴的原点O的位置应该在(  )

查看答案和解析>>

科目:初中数学 来源: 题型:

(2013•菏泽)如图,?ABCD中,对角线AC与BD相交于点E,∠AEB=45°,BD=2,将△ABC沿AC所在直线翻折180°到其原来所在的同一平面内,若点B的落点记为B′,则DB′的长为
2
2

查看答案和解析>>

科目:初中数学 来源: 题型:

(2013•菏泽)如图,三角形ABC是以BC为底边的等腰三角形,点A、C分别是一次函数y=-
3
4
x+3的图象与y轴的交点,点B在二次函数y=
1
8
x2+bx+c
的图象上,且该二次函数图象上存在一点D使四边形ABCD能构成平行四边形.
(1)试求b,c的值,并写出该二次函数表达式;
(2)动点P从A到D,同时动点Q从C到A都以每秒1个单位的速度运动,问:
①当P运动到何处时,有PQ⊥AC?
②当P运动到何处时,四边形PDCQ的面积最小?此时四边形PDCQ的面积是多少?

查看答案和解析>>

同步练习册答案