精英家教网 > 初中数学 > 题目详情
(2009•龙岩)阅读下列材料:
正方形网格中,每个小正方形的顶点称为格点,以格点为顶点的三角形叫格点三角形.
数学老师给小明同学出了一道题目:在图1正方形网格(每个小正方形边长为1)中画出格点△ABC,使AB=AC=,BC=
小明同学的做法是:由勾股定理,得AB=AC=,BC=,于是画出线段AB、AC、BC,从而画出格点△ABC.
(1)请你参考小明同学的做法,在图2正方形网格(每个小正方形边长为1)中画出格点△A′B′C′(A′点位置如图所示),使A′B′=A′C′=5,B′C′=.(直接画出图形,不写过程);
(2)观察△ABC与△A′B′C′的形状,猜想∠BAC与∠B′A′C′有怎样的数量关系,并证明你的猜想.

【答案】分析:(1)读懂题意,根据勾股定理作B'C'=,再以B'为顶点作A'B'=5,连接A'C'即可;
(2)知道两三角形三边长度,求出对应比,可看出对应成比例,所以它们相似,进而证出:∠BAC=∠B'A'C'.
解答:解:
(1)正确画出△A'B'C'(画出其中一种情形即可)(6分)

(2)猜想:∠BAC=∠B'A'C'(8分)
证明:∵
,(10分)
∴△ABC∽△A'B'C',
∴∠BAC=∠B'A'C'(13分)
点评:此题难度中等,考查相似三角形的判定和勾股定理的性质.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

阅读下题和解题过程:化简|x-2|+1-2(x-2),使结果不含绝对值.
解:当x-2≥0时,即x≥2时:
原式=x-2+1-2x+4=-x+3;
当x-2<0,即x<2时:
原式=-(x-2)+1-2x+4=-3x+7.
这种解题的方法叫“分类讨论法”.
请你用“分类讨论法”解一元一次方程:2(|x+1|-3)=x+2.

查看答案和解析>>

科目:初中数学 来源:2009年全国中考数学试题汇编《图形的相似》(05)(解析版) 题型:解答题

(2009•龙岩)阅读下列材料:
正方形网格中,每个小正方形的顶点称为格点,以格点为顶点的三角形叫格点三角形.
数学老师给小明同学出了一道题目:在图1正方形网格(每个小正方形边长为1)中画出格点△ABC,使AB=AC=,BC=
小明同学的做法是:由勾股定理,得AB=AC=,BC=,于是画出线段AB、AC、BC,从而画出格点△ABC.
(1)请你参考小明同学的做法,在图2正方形网格(每个小正方形边长为1)中画出格点△A′B′C′(A′点位置如图所示),使A′B′=A′C′=5,B′C′=.(直接画出图形,不写过程);
(2)观察△ABC与△A′B′C′的形状,猜想∠BAC与∠B′A′C′有怎样的数量关系,并证明你的猜想.

查看答案和解析>>

科目:初中数学 来源:2009年全国中考数学试题汇编《尺规作图》(01)(解析版) 题型:解答题

(2009•龙岩)阅读下列材料:
正方形网格中,每个小正方形的顶点称为格点,以格点为顶点的三角形叫格点三角形.
数学老师给小明同学出了一道题目:在图1正方形网格(每个小正方形边长为1)中画出格点△ABC,使AB=AC=,BC=
小明同学的做法是:由勾股定理,得AB=AC=,BC=,于是画出线段AB、AC、BC,从而画出格点△ABC.
(1)请你参考小明同学的做法,在图2正方形网格(每个小正方形边长为1)中画出格点△A′B′C′(A′点位置如图所示),使A′B′=A′C′=5,B′C′=.(直接画出图形,不写过程);
(2)观察△ABC与△A′B′C′的形状,猜想∠BAC与∠B′A′C′有怎样的数量关系,并证明你的猜想.

查看答案和解析>>

科目:初中数学 来源:2009年福建省龙岩市中考数学试卷(解析版) 题型:解答题

(2009•龙岩)阅读下列材料:
正方形网格中,每个小正方形的顶点称为格点,以格点为顶点的三角形叫格点三角形.
数学老师给小明同学出了一道题目:在图1正方形网格(每个小正方形边长为1)中画出格点△ABC,使AB=AC=,BC=
小明同学的做法是:由勾股定理,得AB=AC=,BC=,于是画出线段AB、AC、BC,从而画出格点△ABC.
(1)请你参考小明同学的做法,在图2正方形网格(每个小正方形边长为1)中画出格点△A′B′C′(A′点位置如图所示),使A′B′=A′C′=5,B′C′=.(直接画出图形,不写过程);
(2)观察△ABC与△A′B′C′的形状,猜想∠BAC与∠B′A′C′有怎样的数量关系,并证明你的猜想.

查看答案和解析>>

同步练习册答案