精英家教网 > 初中数学 > 题目详情
如图,在直角梯形ABCD中,∠D=∠BCD=90°,∠B=60°,AB = 6,AD = 9,点E是CD上的一个动点(E不与D重合),过点E作EF∥AC,交AD于点F(当E运动到C时,EF与AC重合),把△DEF沿着EF对折,点D的对应点是点G,如图①.

⑴ 求CD的长及∠1的度数;
⑵ 设DE = x,△GEF与梯形ABCD重叠部分的面积为y.求y与x之间的函数关系式,并求x为何值时,y的值最大?最大值是多少?
⑶ 当点G刚好落在线段BC上时,如图②,若此时将所得到的△EFG沿直线CB向左平移,速度为每秒1个单位,当E点移动到线段AB上时运动停止.设平移时间为t(秒),在平移过程中是否存在某一时刻t,使得△ABE为等腰三角形?若存在,请直接写出对应的t的值;若不存在,请说明理由.
(1)CD= ,∠1 =30°;(2)当x=时,y的值最大,y的最大值为;(3)存在, t=9或t=9﹣2或t=12﹣

试题分析:(1)过点A作AH⊥BC于点H,构建Rt△AHB和矩形AHCD;通过解直角三角形、矩形的性质求得CD=AH=.则,故∠CAD=30°;然后由平行线的性质推知∠1=∠CAD=30°;
(2)根据△EFG≌△EFD列出y的表达式,从而讨论x的范围,分别得出可能的值即可;
(3)需要分类讨论:以AB为底和以AB为腰的情况.
试题解析:(1)过点A作AH⊥BC于点H.

∵在Rt△AHB中,AB=6,∠B=60°,
∴AH=AB•sinB=
∵四边形ABCD为直角梯形
∴四边形AHCD为矩形
∴CD=AH=

∴∠CAD=30°
∵EF∥AC
∴∠1=∠CAD=30°;
(2)点G恰好在BC上,由对折的对称性可知△FGE≌△FDE,

∴GE=DE=x,∠FEG=∠FED=60°
∴∠GEC=60°
∵△CEG是直角三角形
∴∠EGC=30°
∴在Rt△CEG中,EC=EG=x
由DE+EC=CD 得
∴x=
时,

y=S△EGF=S△EDF=·DE·DF=x=x2
>0,对称轴为y轴
∴当,y随x的增大而增大
∴当x=时,y最大值=
<x≤时,设FG,EG分别交BC于点M、N

∵DE=x,
∴EC=﹣x,NE=2(﹣x),
∴NG=GE﹣NE=3x﹣
又∵∠MNG=∠ENC=30°,∠G=90°,
∴MG=NG•tan30°=

y=S△EGF﹣S△MNG==
,对称轴为直线
∴当<x≤时,y有最大值,
∴当x=时,
综合两种情形:由于
∴当x=时,y的值最大,y的最大值为
(3)由题意可知:AB=6,分三种情况:
①若AE=BE,解得t=9
②若AB=AE,解得t=9﹣2
③若BA=BE,解得t=12﹣
练习册系列答案
相关习题

科目:初中数学 来源:不详 题型:解答题

某公司开发了一种新型的家电产品,又适逢“家电下乡”的优惠政策.现投资40万元用于该产品的广告促销,已知该产品的本地销售量y1(万台)与本地的广告费用x(万元)之间的函数关系满足,该产品的外地销售量y2(万台)与外地广告费用t(万元)之间的函数关系可用如图所示的抛物线和线段AB来表示,其中点A为抛物线的顶点.

(1)结合图象,写出y2(万台)与外地广告费用t(万元)之间的函数关系式;
(2)求该产品的销售总量y(万台)与外地广告费用t(万元)之间的函数关系式;
(3)如何安排广告费用才能使销售总量最大?

查看答案和解析>>

科目:初中数学 来源:不详 题型:单选题

二次函数的图象的顶点坐标是(   )
A.(1,3)B.(1,3)C.(1,3)D.(1,3)

查看答案和解析>>

科目:初中数学 来源:不详 题型:填空题

点A(2,y1)、B(3,y2)是二次函数y=x2-2x+1的图象上两点,则y1与y2的大小关系为y1________y2(填“>”、“<”、“=”).

查看答案和解析>>

科目:初中数学 来源:不详 题型:单选题

已知二次函数的图象如图,其对称轴x=-1,给出下列结果
>4ac,②abc>0,③2a+b=0,④a+b+c>0,⑤a-b+c<0,则正确的结论是(   )
A.①②③④B.②④⑤C.②③④D.①④⑤

查看答案和解析>>

科目:初中数学 来源:不详 题型:单选题

如图,在△ABC中,∠C=90°,M是AB的中点,动点P从点A出发,沿AC方向匀速运动到终点C,动点Q从点C出发,沿CB方向匀速运动到终点B.已知P,Q两点同时出发,并同时到达终点.连结MP,MQ,PQ.在整个运动过程中,△MPQ的面积大小变化情况是
A.一直增大                    B.一直减小
C.先减小后增大                D.先增大后减小

查看答案和解析>>

科目:初中数学 来源:不详 题型:填空题

如图,有一个抛物线形拱桥,其桥拱的最大高度为16米,跨度为40米,现把它的示意图放在平面直角坐标系中,则此抛物线的函数关系式为___________________.

查看答案和解析>>

科目:初中数学 来源:不详 题型:单选题

抛物线y=3x2,y=-3x2,y=x2+3共有的性质是
A.开口向上B.对称轴是y轴
C.都有最高点D.y随x值的增大而增大

查看答案和解析>>

科目:初中数学 来源:不详 题型:单选题

下列关于抛物线的关系说法中,正确的是( )
A.它们的形状相同,开口也相同;
B.它们都关于轴对称;
C.它们的顶点不相同;
D.点()既在抛物线上也在

查看答案和解析>>

同步练习册答案