精英家教网 > 初中数学 > 题目详情
10.在△ABC中,∠C=90°,AB=10,点D在AB边上,且CD=BD,则CD的长为5.

分析 根据等边对等角可得∠B=∠BCD,然后利用等角的余角相等求出∠A=∠ACD,然后根据等角对等边可得AD=CD,从而得到AD=CD=BD,再求解即可.

解答 解:∵CD=BD,
∴∠B=∠BCD,
∵∠C=90°,
∴∠B+∠A=90°,
∠ACD+∠BCD=90°,
∴∠A=∠ACD,
∴AD=CD,
∴AD=CD=BD,
∵AB=10,
∴CD=$\frac{1}{2}$×10=5.
故答案为:5.

点评 本题考查了直角三角形斜边上的中线等于斜边的一半的性质,等边对等角的性质,等角对等边的性质以及等角的余角相等的性质,熟记各性质是解题的关键.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:选择题

20.现有点数为2,3,4,5的四张扑克牌,背面朝上洗匀,然后从中任意抽取从中任意抽取两张,这两张牌上的数字之和为偶数的概率为(  )
A.$\frac{1}{2}$B.$\frac{1}{3}$C.$\frac{1}{4}$D.$\frac{1}{5}$

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

1.如果等腰三角形的周长是底边长的5倍,那么它的顶角的正弦值为$\frac{\sqrt{15}}{8}$.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

18.如图,已知A、B、C、D是⊙O上四点,点E在弧AD上,连接BE交AD于点Q,若∠AQE=∠EDC,∠CQD=∠E,求证:AQ=BC.

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

5.如图,圆锥的底面半径为5cm,侧面积为55πcm2,设圆锥的母线与高的夹角为α,则sinα的值为$\frac{5}{11}$.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

15.如图所示,AB=AC,AB为⊙O的直径,AC、BC分别交⊙O于E、D,连接ED、BE.
(1)求证:△CDE∽△CAB;
(2)求证:DE=BD;
(2)如果BC=6,AB=5,求BE的长.

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

2.如图,AB是⊙O的直径,弦BC=2cm,F是弦BC的中点,∠ABC=60°.若动点E以2cm/s的速度从A点出发沿着A→B方向运动,(到点B终止远动)设运动时间为t(s),连结EF,当△BEF是直角三角形时,t(s)的值为(  )
A.1B.$\frac{3}{2}$C.1或$\frac{7}{4}$D.1或$\frac{3}{2}$

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

19.如图,在直角坐标系xOy内,四边形ABCD为正方形,已知点B(0,3),C(4,0).
(1)过点作DE⊥x轴,垂足为E,△OBC与△ECD全等吗?请说明理由;
(2)写出点D的坐标;
(3)用同样的方法求点A的坐标.

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

20.如图,在半径为5的⊙O中,弦AB=8,P是弦AB所对的优弧上的动点,连接AP,过点A作AP的垂线交射线PB于点C,当△PAB是等腰三角形时,线段BC的长为8,$\frac{56}{15}$或$\frac{8\sqrt{5}}{3}$.

查看答案和解析>>

同步练习册答案