【题目】如图,正方形ABCD中,AB=6,E为AB的中点,将△ADE沿DE翻折得到△FDE,延长EF交BC于G, FH⊥BC,垂足为H,连接BF、DG.以下结论:①BF∥ED; ②△DFG ≌△DCG;③△FHB∽△EAD;④tan∠GEB=;⑤S△BFG=2.4.其中正确的个数是( )
A.2B.3C.4D.5
【答案】D
【解析】
根据正方形的性质、折叠的性质、全等三角形的判定与性质、相似三角形的判定与性质、勾股定理依次对各个选项进行判断、计算,即可得出答案.
解:∵正方形ABCD中,AB=6,E为AB的中点,
∴AD=DC=BC=AB=6,AE=BE=3,∠A=∠C=∠ABC=90°,
∵△ADE沿DE翻折得到△FDE,
∴∠AED=∠FED,AD=FD=6,AE=EF=3,∠A=∠DFE=90°,
∴BE=EF=3,∠DFG=∠C=90°,
∴∠EBF=∠EFB,
∵∠AED+∠FED=∠EBF+∠EFB,
∴∠DEF=∠EFB,
∴BF∥ED,故①正确;
∵AD=FD,
∴DF=DC,
在Rt△DFG和Rt△DCG中,
,
∴Rt△DFG≌Rt△DCG(HL),故②正确;
∵FH⊥BC,∠ABC=90°,
∴AB∥FH,∠FHB=∠A=90°,
∴∠EBF=∠BFH=∠AED,
∴△FHB∽△EAD,故③正确;
∵Rt△DFG≌Rt△DCG,
∴FG=CG,
设FG=CG=x,则BG=6-x,EG=EF+FG=BE+FG=3+x,
在Rt△BEG中,由勾股定理得:32+(6-x)2=(3+x)2,
解得:x=2,
∴BG=4,
∴tan∠GEB=;故④正确;
∵△FHB∽△EAD,且,
∴BH=2FH
设FH=a,则HG=4-2a,
在Rt△FHG中,由勾股定理得:a2+(4-2a)2=22,
解得:a=2(舍去)或a=,
∴S△BFG=×4×=2.4,故⑤正确;
故选:D.
科目:初中数学 来源: 题型:
【题目】如图,在△ABC中,AB=AC,以AB为直径的⊙O交BC于点D,连结OD,AD.以下结论:①∠ADB=90°;②D是BC的中点;③AD是∠BAC的平分线;④OD∥AC,其中正确结论的个数有( )
A.1个B.2个C.3个D.4个
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在边长为1个单位长度的小正方形组成的12×12网格中建立平面直角坐标系,格点△ABC(顶点是网格线的交点)的坐标分别是A(﹣2,2)、B(﹣3,1)、C(﹣1,0).
(1)将△ABC先向右平移2个单位长度,向下平移7个单位长度,得到△DEF,画出△DEF;
(2)以O为位似中心,将△ABC放大为原来的2倍,在网格内画出放大后的△A1B1C1,若P(x,y)为△ABC中的任意一点,其对应点P1的坐标为 .
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,△ABC中,AB=AC,以AC为直径的⊙O交BC于点D,点E为AC延长线上一点,且DE是⊙O的切线.
(1)求证:∠CDE= ∠BAC;
(2)若AB=3BD,CE=4,求⊙O的半径.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】为缓解扬州城区交通压力,城市南部快速通道已于4.18开工建设.某工程队承担了某道路900米长的改造任务.工程队在改造完360米道路后,引进了新设备,每天的工作效率比原来提高了20%,结果共用27天完成了任务,问引进新设备前工程队每天改造道路多少米?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图①,某新建火车站站前广场需要绿化的面积为35000,施工队在绿化了11000后,将每天的工作量增加为原来的1.5倍,结果提前4天完成了该项绿化工程.
(1)该项绿化工程原计划每天完成多少平方米?
(2)该项绿化工程中有一块长为20、宽为8的矩形空地,计划在其中修建两块相同的矩形绿地,它们的面积之和为56,两块绿地之间及周边留有宽度相等的人行通道(如图②所示),则人行通道的宽度是多少米?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,矩形ABCD的对角线AC,BD相交于点O,点E,F在BD上,BE=DF,
(1)求证:AE=CF;
(2)若AB=3,∠AOD=120°,求矩形ABCD的面积.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,已知:抛物线y=a(x+1)(x﹣3)交x轴于A、C两点,交y轴于B.且OB=2CO.
(1)求点A、B、C的坐标及二次函数解析式;
(2)在直线AB上方的抛物线上有动点E,作EG⊥x轴交x轴于点G,交AB于点M,作EF⊥AB于点F.若点M的横坐标为m,求线段EF的最大值.
(3)抛物线对称轴上是否存在点P使得△ABP为直角三角形,若存在请直接写出点P的坐标;若不存在请说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在正方形ABCD中,M、N分别是射线CB和射线DC上的动点,且始终∠MAN=45°.
(1)如图1,当点M、N分别在线段BC、DC上时,请直接写出线段BM、MN、DN之间的数量关系;
(2)如图2,当点M、N分别在CB、DC的延长线上时,(1)中的结论是否仍然成立,若成立,给予证明,若不成立,写出正确的结论,并证明;
(3)如图3,当点M、N分别在CB、DC的延长线上时,若CN=CD=6,设BD与AM的延长线交于点P,交AN于Q,直接写出AQ、AP的长.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com