精英家教网 > 初中数学 > 题目详情

【题目】如图,AD平分∠BAC,AD⊥BD,垂足为点D,DE∥AC. 求证:△BDE是等腰三角形.

【答案】证明:∵DE∥AC, ∴∠1=∠3,
∵AD平分∠BAC,
∴∠1=∠2,
∴∠2=∠3,
∵AD⊥BD,
∴∠2+∠B=90°,∠3+∠BDE=90°,
∴∠B=∠BDE,
∴△BDE是等腰三角形.

【解析】直接利用平行线的性质得出∠1=∠3,进而利用角平分线的定义结合互余的性质得出∠B=∠BDE,即可得出答案.
【考点精析】根据题目的已知条件,利用平行线的性质和等腰三角形的判定的相关知识可以得到问题的答案,需要掌握两直线平行,同位角相等;两直线平行,内错角相等;两直线平行,同旁内角互补;如果一个三角形有两个角相等,那么这两个角所对的边也相等(简称:等角对等边).这个判定定理常用于证明同一个三角形中的边相等.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】观察下列一组图形,其中图形①中共有2颗星,图形②中共有6颗星,图形③中共有11颗星,图形④中共有17颗星,…,按此规律,图形⑧中星星的颗数是( )

A.43
B.45
C.51
D.53

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】计算:( 1+2cos30°﹣| ﹣1|+(﹣1)2017

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,分别是可活动的菱形和平行四边形学具,已知平行四边形较短的边与菱形的边长相等.

(1)在一次数学活动中,某小组学生将菱形的一边与平行四边形较短边重合,摆拼成如图1所示的图形,AF经过点C,连接DE交AF于点M,观察发现:点M是DE的中点.
下面是两位学生有代表性的证明思路:
思路1:不需作辅助线,直接证三角形全等;
思路2:不证三角形全等,连接BD交AF于点H.…
请参考上面的思路,证明点M是DE的中点(只需用一种方法证明);
(2)如图2,在(1)的前提下,当∠ABE=135°时,延长AD、EF交于点N,求 的值;
(3)在(2)的条件下,若 =k(k为大于 的常数),直接用含k的代数式表示 的值.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,四边形ABCD中,AD∥BC,CM是∠BCD的平分线,且CM⊥AB,M为垂足,AM= AB.若四边形ABCD的面积为 ,则四边形AMCD的面积是

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】下列运算正确的是( )
A. (a2+2b2)﹣2(﹣a2+b2)=3a2+b2
B.﹣a﹣1=
C. (﹣a)3m÷am=(﹣1)ma2m
D. 6x2﹣5x﹣1=(2x﹣1)(3x﹣1)

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】计算题
(1)计算:|2﹣ |﹣ )+
(2)先化简,再求值: ÷ + ,其中x=﹣

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在△ABC中,∠C=90°,AC=3,BC=4,点D,E分别在AC,BC上(点D与点A,C不重合),且∠DEC=∠A,将△DCE绕点D逆时针旋转90°得到△DC′E′.当△DC′E′的斜边、直角边与AB分别相交于点P,Q(点P与点Q不重合)时,设CD=x,PQ=y.
(1)求证:∠ADP=∠DEC;
(2)求y关于x的函数解析式,并直接写出自变量x的取值范围.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在矩形ABCD中,AB= ,E是BC的中点,AE⊥BD于点F,则CF的长是

查看答案和解析>>

同步练习册答案