精英家教网 > 初中数学 > 题目详情
8.一个手机经销商计划购进某品牌的A型、B型、C型三款手机共60部,每款手机至少要购进8部,且恰好用完购机款61000元.设购进A型手机x部、B型手机y部,三款手机的进价和预售价如表:
手机型号A型B型C型
进价(单位:元/部)90012001100
预售价(单位:元/部)120016001300
(1)用含x,y的式子表示购进C型手机的部数;
(2)求出y与x之间的函数关系式;
(3)假设所购进手机全部售出,综合考虑各种因素,该手机经销商在购销这批手机过程中需另外支出各种费用共1500元.
①求出预估利润P(元)与x(部)的函数关系式;
(注:预估利润P=预售总额-购机款-各种费用)
②求出预估利润的最大值,并写出此时购进三款手机各多少部.

分析 (1)利用A型、B型、C型三款手机共60部,由A、B型手机的部数可表示出C型手机的部数;
(2)根据购机款列出等式可表示出x、y之间的关系;
(3)①由预估利润P=预售总额-购机款-各种费用,列出等式即可;
②根据题意列出不等式组,求出购买方案的种数,预估利润最大值即为合理的方案

解答 解:(1)根据题意,知购进C型手机的部数为60-x-y;

(2)根据题意,得:900x+1200y+1100(60-x-y)=61000,
整理,得:y=2x-50;

(3)①由题意,得:P=1200x+1600y+1300(60-x-y)-61000-1500=500x+500.
②购进C型手机部数为60-x-y=110-3x,根据题意,可列不等式组:
$\left\{\begin{array}{l}{x≥8}\\{2x-50≥8}\\{110-3x≥8}\end{array}\right.$,
解得:29≤x≤34,
∵P是x的一次函数,k=500>0,
∴P随x的增大而增大,
∴当x=34时,P取得最大值,最大值为17500元,
此时购进A型手机34部、B型手机18部、C型手机8部.

点评 此题考查了一次函数应用问题,解题的关键是结合图表,理解题意,求得一次函数解析式,然后根据函数的性质求解,注意函数思想的应用.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:填空题

18.函数y=2x和y=ax+4的图象相交于点A(m,3),则方程2x=ax+4的解为x=1.5.

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

19.如图,在⊙O中,∠C=30°,AB=2cm,则弧AB的长等于$\frac{2π}{3}$.(结果保留π)

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

16.如图,矩形ABCD的顶点AB在x轴上,点D的坐标为(3,4),点E在边BC上,△CDE沿DE翻折后点C恰好落在x轴上点F处,若△ODF为等腰三角形,点C的坐标为(8,4)或(3$+2\sqrt{5}$,4)或($\frac{43}{6}$,4).

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

3.已知:一次函数y=-x+b的图象与x轴、y轴的交点分别为A、B与反比例函数$y=\frac{5}{x}(x>0)$的图象交于点C、D,且$\frac{BD}{BA}=\frac{2}{3}$.
(1)求∠BAO的度数;
(2)求O到BC的距离.

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

13.如图,正方形ABCD是一块绿化带,E,F,G,H分别是AB,BC,CD,AD的中点,阴影部分EOCF,AOGH都是花圃,一只自由飞翔的小鸟,将随机落在这块绿化带上,则小鸟在花圃上的概率为(  )
A.$\frac{1}{2}$B.$\frac{2}{3}$C.$\frac{1}{3}$D.$\frac{2}{5}$

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

20.计算:6tan260°-cos30°•tan30°-2sin45°+cos60°.

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

17.如图1,S是矩形ABCD的AD边上一点,点E以每秒kcm的速度沿折线BS-SD-DC匀速运动,同时点F从点C出发点,以每秒1cm的速度沿边CB匀速运动并且点F运动到点B时点E也运动到点C.动点E,F同时停止运动.设点E,F出发t秒时,△EBF的面积为ycm2.已知y与t的函数图象如图2所示.其中曲线OM,NP为两段抛物线,MN为线段.则下列说法:
①点E运动到点S时,用了2.5秒,运动到点D时共用了4秒
②矩形ABCD的两邻边长为BC=6cm,CD=4cm;
③sin∠ABS=$\frac{\sqrt{3}}{2}$;
④点E的运动速度为每秒2cm.其中正确的是(  )
A.①②③B.①③④C.①②④D.②③④

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

18.如图,四边形ABCD是平行四边形,BE、DF分别是∠ABC、∠ADC的平分线,且与对角线AC分别相交于点E、F.
(1)求证:AE=CF;
(2)连结ED、FB,判断四边形BEDF是否是平行四边形,说明理由.

查看答案和解析>>

同步练习册答案