精英家教网 > 初中数学 > 题目详情
(2010•朝阳区二模)如图1,四边形ABCD,将顶点为A的角绕着顶点A顺时针旋转,角的一条边与DC的延长线交于点F,角的另一边与CB的延长线交于点E,连接EF.
(1)如果四边形ABCD为正方形,当∠EAF=45°时,有EF=DF-BE.请你思考如何证明这个结论(只需思考,不必写出证明过程);
(2)如图2,如果在四边形ABCD中,AB=AD,∠ABC=∠ADC=90°,当∠EAF=∠BAD时,EF与DF、BE之间有怎样的数量关系?请写出它们之间的关系式(只需写出结论);
(3)如图3,如果在四边形ABCD中,AB=AD,∠ABC与∠ADC互补,当∠EAF=∠BAD时,EF与DF、BE之间有怎样的数学关系?请写出它们之间的关系式并给予证明;
(4)在(3)中,若BC=4,DC=7,CF=2,求△CEF的周长(直接写出结果即可).

【答案】分析:(1)(2)(3)的解题思路一致,都是通过两步全等来实现;在DF上截取DM=BE,第一步,首先证△ADM≌△ABE,得DF=BE;第二步,证△AMF≌△AEF,得EF=FM,由此得到DF、EF、BE的数量关系.
(4)根据前三问的结论知:EF=DF-BE,那么△CEF的周长可转化为:EF+BE+BC+FC=DF+BC+FC,即可得解.
解答:解:(1)证明:在DF上截取DM=BE;
∵AD=AB,∠ABE=∠ADM=90°,
∴△ABE≌△ADM(SAS),
∴AE=AM,∠EAB=∠DAM;
∵∠EAF=45°,且∠EAB=∠DAM,
∴∠BAF+∠DAM=45°,即∠MAF=45°=∠EAF,
又∵AE=AM,AF=AF,
∴△AEF≌△AMF,得EF=FM,
∵DF=DM+FM,
∴DF=BE+EF,即EF=DF-BE.

(2)EF=DF-BE.(解法参照(1)(3))

(3)EF=DF-BE.
证明:在DF上截取DM=BE,
∵∠D+∠ABC=∠ABE+∠ABC=180°,
∴∠D=∠ABE,
∴AD=AB,
∴△ADM≌△ABE,
∴AM=AE,
∴∠DAM=∠BAE;
∵∠EAF=∠BAE+∠BAF=∠BAD,
∴∠MAF=∠BAD,
∴∠EAF=∠MAF;
∵AF是△EAF与△MAF的公共边,
∴△EAF≌△MAF,
∴EF=MF;
∵MF=DF-DM=DF-BE,
∴EF=DF-BE.

(4)由上面的结论知:DF=EF+BE;
∴△CEF的周长=EF+BE+BC+CF=DF+BC+CF=9+4+2=15.
即△CEF的周长为15.
点评:此题主要考查的是全等三角形的判定和性质,通过两步全等来证得关键的两组线段相等是此题的基本思路.
练习册系列答案
相关习题

科目:初中数学 来源:2010年北京市朝阳区中考数学二模试卷(解析版) 题型:解答题

(2010•朝阳区二模)如图,在边长在2的正方形ABCD中,点F在x轴上一点,CF=1,过点B作BF的垂线,交y轴于点E;
(1)求过点E、B、F的抛物线的解析式;
(2)将∠EBF绕点B顺时针旋转,角的一边交y轴正半轴于点M,另一边交x轴于点N,设BM与(1)中抛物线的另一交点为G,当点G的横坐标为时,EM与NO有怎样的数量关系?请说明你的结论;
(3)点P在(1)中的抛物线上,且PE与y轴所成锐角的正切值为,求点P的坐标.

查看答案和解析>>

科目:初中数学 来源:2010年北京市朝阳区中考数学二模试卷(解析版) 题型:解答题

(2010•朝阳区二模)如图,反比例函数y=(x>0)的图象经过点A.
(1)求反比例函数的解析式;
(2)若点B在y=(x>0)的图象上,求直线AB的解析式.

查看答案和解析>>

科目:初中数学 来源:2011年北京市中考数学模拟试卷(解析版) 题型:选择题

(2010•朝阳区二模)全球可被人类利用的淡水总量仅占总水量的0.00003,因此珍惜水,保护水是我们每一位公民义不容辞的责任,其中数字0.00003用科学记数法表示为( )
A.3×10-4
B.3×10-5
C.0.3×10-4
D.0.3×10-5

查看答案和解析>>

科目:初中数学 来源:2010年北京市朝阳区中考数学二模试卷(解析版) 题型:解答题

(2010•朝阳区二模)如图,平行四边形ABCD中,AD=8,CD=4,∠D=60°.点P与点Q是平行四边形ABCD边上的动点,点P以每秒1个单位长度的速度,从点C运动到点D,点Q以每秒2个单位长度的速度从点A→点B→点C运动,当其中一个点到达终点时,另一个点随之停止运动.点P与点Q同时出发,设运动时间为t,△CPQ的面积为S.
(1)求S关于t的函数关系式;
(2)求出S的最大值;
(3)t为何值时,以△CPQ的一边所在直线为轴翻折,翻折前后的两个三角形所组成的四边形是菱形?

查看答案和解析>>

同步练习册答案