精英家教网 > 初中数学 > 题目详情

如图,已知一次函数y=k1x+b(k1≠0)的图象分别与x轴,y轴交于A,B两点,且与反比例函数(k2≠0)的图象在第一象限的交点为C,过点C作x轴的垂线,垂足为D,若OA=OB=OD=2.

(1)求一次函数的解析式;
(2)求反比例函数的解析式.

解:(1)∵OA=OB=2,∴A(﹣2,0),B(0,2)。
将A与B的坐标代入y=k1x+b得:,解得:
∴一次函数解析式为y=x+2。
(2)∵OD=2,∴D(2,0)。
∵点C在一次函数y=x+2上,且CD⊥x轴,
∴将x=2代入一次函数解析式得:y=2+2=4,即点C坐标为(2,4)。
∵点C在反比例图象上,∴将C(2,4)代入反比例解析式得:k2=8。
∴反比例解析式为

解析试题分析:(1)由OA与OB的长,确定出A与B的坐标,代入一次函数解析式中求出k1与b的值,即可确定出一次函数解析式。
(2)由OD的长,确定出D坐标,根据CD垂直于x轴,得到C与D横坐标相同,代入一次函数解析式求出C的纵坐标,确定出C坐标,将C坐标代入反比例解析式中求出k2的值,即可确定出反比例解析式。 

练习册系列答案
相关习题

科目:初中数学 来源: 题型:解答题

已知一次函数的图象经过点,且与函数的图象相交于点
(1)求的值;
(2)若函数的图象与轴的交点是B,函数的图象与轴的交点是C,求四边形的面积(其中O为坐标原点).

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

青海新闻网讯:西宁市为加大向国家环境保护模范城市大步迈进的步伐,积极推进城市绿地、主题公园、休闲场地建设.园林局利用甲种花卉和乙种花卉搭配成A、B两种园艺造型摆放在夏都大道两侧.搭配数量如下表所示:

 
甲种花卉(盆)
乙种花卉(盆)
A种园艺造型(个)


B种园艺造型(个)


(1)已知搭配一个A种园艺造型和一个B种园艺造型共需元.若园林局搭配A种园艺造型个,B种园艺造型个共投入元.则A、B两种园艺 造型的单价分别是多少元?
(2)如果搭配A、B两种园艺造型共个,某校学生课外小组承接了搭配方案的设计,其中甲种花卉不超过盆,乙种花卉不超过盆,问符合题意的搭配方案有几种?请你帮忙设计出来.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

(2013年四川南充8分)某商场购进一种每件价格为100元的新商品,在商场试销发现:销售单价x(元/件)与每天销售量y(件)之间满足如图所示的关系:

(1)求出y与x之间的函数关系式;
(2)写出每天的利润W与销售单价x之间的函数关系式;若你是商场负责人,会将售价定为多少,来保证每天获得的利润最大,最大利润是多少?

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

甲、乙两地相距300千米,一辆货车和一辆轿车先后从甲地出发向乙地,如图,线段OA表示货车离甲地距离y(千米)与时间x(小时)之间的函数关系;折线BCD表示轿车离甲地距离y(千米)与x(小时)之间的函数关系.请根据图象解答下列问题:

(1)轿车到达乙地后,货车距乙地多少千米?
(2)求线段CD对应的函数解析式.
(3)轿车到达乙地后,马上沿原路以CD段速度返回,求轿车从甲地出发后多长时间再与货车相遇(结果精确到0.01).

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

某校为了实施“大课间”活动,计划购买篮球、排球共60个,跳绳120根.已知一个篮球70元,一个排球50元,一根跳绳10元.设购买篮球x个,购买篮球、排球和跳绳的总费用为y元.
(1)求y与x之间的函数关系式;
(2)若购买上述体育用品的总费用为4 700元,问篮球、排球各买多少个?

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

如图,在平面直角坐标系中,直线AB分别与x轴,y轴相交于A,B两点,OA,OB的长分别是方程x2﹣14x+48=0的两根,且OA<OB.

(1)求点A,B的坐标.
(2)过点A作直线AC交y轴于点C,∠1是直线AC与x轴相交所成的锐角,sin∠1=,点D在线段CA的延长线上,且AD=AB,若反比例函数的图象经过点D,求k的值.
(3)在(2)的条件下,点M在射线AD上,平面内是否存在点N,使以A,B,M,N为顶点的四边形是邻边之比为1:2的矩形?若存在,请直接写出点N的坐标;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

如图,已知直线轴、轴分别交于点,与双曲线分别交于点,且点的坐标为.

(1)分别求出直线及双曲线的解析式;
(2)求出点的坐标;
(3)利用图象直接写出:当在什么范围内取值时,>.

查看答案和解析>>

科目:初中数学 来源: 题型:单选题

将二次函数化为的形式,下列结果正确的是[(   )]

A. B.
C. D.

查看答案和解析>>

同步练习册答案