精英家教网 > 初中数学 > 题目详情

【题目】如图,已知:EFAC,垂足为点FDMAC,垂足为点MDM的延长线交AB于点B,且∠1=∠C,点NAD上,且∠2=∠3,试说明ABMN.

【答案】证明见解析.

【解析】试题分析:因为EFACDMAC得到EFDM,根据平行线的性质得∠3CDM,则∠2CDM,根据平行线的判定得到MNCD,所以∠AMNC,又∠1C,于是∠1AMN,然后根据平行线的判定得到ABMN.

试题解析:

EFACDMAC

∴∠CFECMD90°(垂直定义),

EFDM(同位角相等,两直线平行),

∴∠3CDM(两直线平行,同位角相等)

∵∠32(已知)

∴∠2CDM(等量代换)

MNCD(内错角相等,两直线平行)

∴∠AMNC(两直线平行,同位角相等)

∵∠1C(已知)

∴∠1AMN(等量代换)

ABMN(内错角相等,两直线平行)

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】观察下列各式

x1)(x+1)=x21

x1)(x2+x+1)=x31

x1)(x3+x2+x+1)=x41

1)根据以上规律,则(x1)(x6+x5+x4+x3+x2+x+1)=   

2)你能否由此归纳出一般规律(x1)(xn+xn1+……+x+1)=   

3)根据以上规律求32018+32017+32016+…32+3+1的结果.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知函数y=(m+1)x2|m|n+4.

(1)当mn为何值时,此函数是一次函数?

(2)当mn为何值时,此函数是正比例函数?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,已知∠1和∠2互为补角,∠A=D.求证:ABCD.

证明:∵∠1与∠CGD是对顶角,

∴∠1=CGD______.

又∠1和∠2互为补角(已知),

∴∠CGD和∠2互为补角,

AEFD_________

∴∠A=BFD_______.

∵∠A=D(已知),

∴∠BFD=D_______

ABCD______.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,正方形ABCD的边长为1,分别以顶点A、B、C、D为圆心,1为半径画弧,四条弧交于点E、F、G、H,则图中阴影部分的外围周长为(  )

A.
B.
C.π
D.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,E点为DF上的点,BAC上的点,∠1=∠2∠C=∠D

试说明:AC∥DF

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】定义,如图1,点M,N把线段AB分割成AM,MNBN,若以AM,MN,BN为边的三角形是一个直角三角形,则称点M,N为线段AB的勾股分割点.

(1)已知点M,N是线段AB的勾股分割点,若AM=3,MN=5,求BN的长

(2)如图2,在RtABC中,AC=BC,点M,N在斜边AB上,∠MCN=45°,求证:点M,N是线段AB的勾股分割点;阳阳在解决第(2)小题时遇到了困难,陈老师对阳阳说:要证明勾股分割点,则需设法构造直角三角形,你可以把CBN绕点C逆时针旋转90度试试,请根据陈老师的提示完成证明过程.

(3)如图3,C是线段AB上的一定点,请在BC上画一点D,使C、D是线段AB的勾股分割点

(要求:完成尺规作图,保留作图痕迹,并在右侧分步写出作图步骤)

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,已知四边形ABCD内接于圆O,连结BD,∠BAD=105°,∠DBC=75°.

(1)求证:BD=CD;
(2)若圆O的半径为3,求 的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】看图填空:

(1)1和∠3是直线________被直线____所截得的______

(2)1和∠4是直线_________被直线____所截得的______

(3)B和∠2是直线_________被直线_____所截得的______

(4)B和∠4是直线_________被直线_____所截得的_______

查看答案和解析>>

同步练习册答案