精英家教网 > 初中数学 > 题目详情
如图,△ABC为圆O的内接三角形,BD为⊙O的直径,AB=AC,AD交BC于E,AE=2,ED=4.
(1)求证:△ABE∽△ADB,并求AB的长;
(2)延长DB到F,使BF=BO,连接FA,那么直线FA与⊙O相切吗?为什么?

【答案】分析:(1)易得△ABE与△ADB的三个内角相等,故△ABE∽△ADB,进而可得;代入数据可得答案.
(2)连接OA,根据勾股定理可得BF=BO=AB;易得∠OAF=90°,故可得直线FA与⊙O相切.
解答:(1)证明:∵AB=AC,
∴∠ABC=∠C.
∵∠C=∠D,
∴∠ABC=∠D.
又∵∠BAE=∠DAB,
∴△ABE∽△ADB,(3分)

∴AB2=AD•AE=(AE+ED)•AE=(2+4)×2=12,
∴AB=2.(5分)

(2)解:直线FA与⊙O相切.(6分)
理由如下:
连接OA,
∵BD为⊙O的直径,
∴∠BAD=90°,
∴BD=
∴BF=BO=
∵AB=2
∴BF=BO=AB,
∴∠OAF=90°.
∴直线FA与⊙O相切.(8分)
点评:本题考查常见的几何题型,包括切线的判定及相似三角形证明与性质的运用,要求学生掌握常见的解题方法,并能结合图形选择简单的方法解题.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

精英家教网如图,△ABC为圆O的内接三角形,BD为⊙O的直径,AB=AC,AD交BC于E,AE=2,ED=4.
(1)求证:△ABE∽△ADB,并求AB的长;
(2)延长DB到F,使BF=BO,连接FA,那么直线FA与⊙O相切吗?为什么?

查看答案和解析>>

科目:初中数学 来源:第3章《圆》常考题集(22):3.5 直线和圆的位置关系(解析版) 题型:解答题

如图,△ABC为圆O的内接三角形,BD为⊙O的直径,AB=AC,AD交BC于E,AE=2,ED=4.
(1)求证:△ABE∽△ADB,并求AB的长;
(2)延长DB到F,使BF=BO,连接FA,那么直线FA与⊙O相切吗?为什么?

查看答案和解析>>

科目:初中数学 来源:第35章《圆(二)》常考题集(10):35.4 切线的判定(解析版) 题型:解答题

如图,△ABC为圆O的内接三角形,BD为⊙O的直径,AB=AC,AD交BC于E,AE=2,ED=4.
(1)求证:△ABE∽△ADB,并求AB的长;
(2)延长DB到F,使BF=BO,连接FA,那么直线FA与⊙O相切吗?为什么?

查看答案和解析>>

科目:初中数学 来源:第26章《圆》常考题集(28):26.5 直线与圆的位置关系(解析版) 题型:解答题

如图,△ABC为圆O的内接三角形,BD为⊙O的直径,AB=AC,AD交BC于E,AE=2,ED=4.
(1)求证:△ABE∽△ADB,并求AB的长;
(2)延长DB到F,使BF=BO,连接FA,那么直线FA与⊙O相切吗?为什么?

查看答案和解析>>

同步练习册答案