精英家教网 > 初中数学 > 题目详情
(2010•双鸭山)如图,在平面直角坐标系中,函数y=2x+12的图象分别交x轴,y轴于A,B两点过点A的直线交y轴正半轴与点M,且点M为线段OB的中点.
(1)求直线AM的函数解析式.
(2)试在直线AM上找一点P,使得S△ABP=S△AOB,请直接写出点P的坐标.
(3)若点H为坐标平面内任意一点,在坐标平面内是否存在这样的点H,使以A,B,M,H为顶点的四边形是等腰梯形?若存在,请直接写出点H的坐标;若不存在,请说明理由.

【答案】分析:(1)通过函数y=2x+12求出A、M两点坐标,由两点坐标求出直线AM的函数解析式;
(2)设出P点坐标,按照等量关系“×|AP|×B到直线AM的距离=S△AOB”即可求出;
(3)判断能否构成等腰梯形,主要看两腰能否等腰,本题应分别把AB、AM、BM看作底来判断.
解答:解:(1)∵直线AB的函数解析式y=2x+12,
∴A(-6,0),B(0,12).
又∵M为线段OB的中点,
∴M(0,6).
∴直线AM的解析式y=x+6;

(2)设P点坐标(x,x+6),则|AP|=|x+6|,B到直线AM的距离d=

解得:x=6或-18.
∴P(6,12)或P(-18,-12);

(3)存在这样的点H,使以A,B,M,H为顶点的四边形是等腰梯形.
若以AM为底,BM为腰,过点B作AM的平行线,当点H的坐标为(-12,0)时,以A,B,M,H为顶点的四边形是等腰梯形;
若以BM为底,AM为腰,过点A作BM的平行线,当点H的坐标为(-6,18)时,以A,B,M,H为顶点的四边形是等腰梯形;
若以AB为底,BM为腰,过点M作AB的平行线,当点H的坐标为(-)时,以A,B,M,H为顶点的四边形是等腰梯形.
故所求点H的坐标为(-12,0)或(-6,18)或(-).
点评:本题为一次函数综合类的题,需掌握由函数图象求点的坐标,能够计算点到直线的距离.
练习册系列答案
相关习题

科目:初中数学 来源:2010年黑龙江省绥化市中考数学试卷(解析版) 题型:解答题

(2010•双鸭山)已知二次函数的图象经过点(0,3),(-3,0),(2,-5),且与x轴交于A、B两点.
(1)试确定此二次函数的解析式;
(2)判断点P(-2,3)是否在这个二次函数的图象上?如果在,请求出△PAB的面积;如果不在,试说明理由.

查看答案和解析>>

科目:初中数学 来源:2010年黑龙江省齐齐哈尔市中考数学试卷(解析版) 题型:解答题

(2010•双鸭山)如图,在平面直角坐标系中,函数y=2x+12的图象分别交x轴,y轴于A,B两点过点A的直线交y轴正半轴与点M,且点M为线段OB的中点.
(1)求直线AM的函数解析式.
(2)试在直线AM上找一点P,使得S△ABP=S△AOB,请直接写出点P的坐标.
(3)若点H为坐标平面内任意一点,在坐标平面内是否存在这样的点H,使以A,B,M,H为顶点的四边形是等腰梯形?若存在,请直接写出点H的坐标;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源:2010年黑龙江省大兴安岭地区中考数学试卷(解析版) 题型:解答题

(2010•双鸭山)如图,在平面直角坐标系中,函数y=2x+12的图象分别交x轴,y轴于A,B两点过点A的直线交y轴正半轴与点M,且点M为线段OB的中点.
(1)求直线AM的函数解析式.
(2)试在直线AM上找一点P,使得S△ABP=S△AOB,请直接写出点P的坐标.
(3)若点H为坐标平面内任意一点,在坐标平面内是否存在这样的点H,使以A,B,M,H为顶点的四边形是等腰梯形?若存在,请直接写出点H的坐标;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源:2010年黑龙江省大兴安岭地区中考数学试卷(解析版) 题型:解答题

(2010•双鸭山)因南方旱情严重,乙水库的蓄水量以每天相同的速度持续减少.为缓解旱情,北方甲水库立即以管道运输的方式给予以支援下图是两水库的蓄水量y(万米3)与时间x(天)之间的函数图象.在单位时间内,甲水库的放水量与乙水库的进水量相同(水在排放、接收以及输送过程中的损耗不计).通过分析图象回答下列问题:
(1)甲水库每天的放水量是多少万立方米?
(2)在第几天时甲水库输出的水开始注入乙水库?此时乙水库的蓄水量为多少万立方米?
(3)求直线AD的解析式.

查看答案和解析>>

同步练习册答案