精英家教网 > 初中数学 > 题目详情
(2004•三明)如图,PAB、PCD是⊙O的两条割线,PA=3,AB=5,PC=4,则CD等于( )

A.6
B.2
C.
D.
【答案】分析:首先求得PB的长,再根据割线定理得PC•PD=PA•PB即可求得PD及CD的长.
解答:解:∵PA=3,AB=5,PC=4,
∴PB=8,
∵PC•PD=PA•PB,
∴PD=6,
∴CD=6-4=2.
故选B.
点评:此题主要是运用了割线定理.
练习册系列答案
相关习题

科目:初中数学 来源:2004年全国中考数学试题汇编《二次函数》(03)(解析版) 题型:解答题

(2004•三明)如图①是一张眼镜的照片,两镜片下半部分轮廓可以近似看成抛物线形状.建立如图②直角坐标系,已知左轮廓线端点A、B间的距离为4cm,点A、B与右轮廓线端点D、E均在平行于x轴的直线上,最低点C在x轴上,且与AB的距离CH=1cm,y轴平分BD,BD=2cm.解答下列问题:
(1)求轮廓线ACB的函数解析式;(写出自变量x的取值范围)
(2)由(1)写出右轮廓线DFE对应的函数解析式及自变量x的取值范围.

查看答案和解析>>

科目:初中数学 来源:2004年福建省三明市中考数学试卷(解析版) 题型:解答题

(2004•三明)如图①是一张眼镜的照片,两镜片下半部分轮廓可以近似看成抛物线形状.建立如图②直角坐标系,已知左轮廓线端点A、B间的距离为4cm,点A、B与右轮廓线端点D、E均在平行于x轴的直线上,最低点C在x轴上,且与AB的距离CH=1cm,y轴平分BD,BD=2cm.解答下列问题:
(1)求轮廓线ACB的函数解析式;(写出自变量x的取值范围)
(2)由(1)写出右轮廓线DFE对应的函数解析式及自变量x的取值范围.

查看答案和解析>>

科目:初中数学 来源:2004年全国中考数学试题汇编《圆》(14)(解析版) 题型:解答题

(2004•三明)如图①有一个宝塔,他的地基边缘是周长为26m的正五边形ABCDE(如图②),点O为中心.(下列各题结果精确到0.1m)
(1)求地基的中心到边缘的距离;
(2)己知塔的墙体宽为1m,现要在塔的底层中心建一圆形底座的塑像,并且留出最窄处为1.6m的观光通道,问塑像底座的半径最大是多少?

查看答案和解析>>

科目:初中数学 来源:2004年全国中考数学试题汇编《圆》(11)(解析版) 题型:解答题

(2004•三明)如图,在⊙O中,直径AB垂直于弦CD,垂足为点E,点F在AC上从A点向C点运动(点A、C除外),AF与DC的延长线相交于点M.
(1)求证:△AFD∽△CFM;
(2)点F在运动中是否存在一个位置使△FMD为等腰三角形?若存在,给予证明;若不存在,请说明理由.

查看答案和解析>>

同步练习册答案