【题目】如图所示,在平面直角坐标系xoy中,直线y=x+交x轴于点B,交y轴于点A,过点C(1,0)作x轴的垂线l,将直线l绕点C按逆时针方向旋转,旋转角为α(0°<α<180°).
(1)当直线l与直线y=x+平行时,求出直线l的解析式;
(2)若直线l经过点A,①求线段AC的长;②直接写出旋转角α的度数;
(3)若直线l在旋转过程中与y轴交于D点,当△ABD、△ACD、△BCD均为等腰三角形时,直接写出符合条件的旋转角α的度数.
【答案】(1)y=x;(2)①AC=2;②α=30°;(3)α=15°或60°或105°或150°
【解析】
(1)设直线l的解析式为y=x+b,把点C(1,0)代入求出b即可;
(2)①求出点A的坐标,利用两点间距离公式即可求出AC的长;②如图1中,由CE∥OA,推出∠ACE=∠OAC,由tan∠OAC=,推出∠OAC=30°,即可解决问题;
(3)根据等腰三角形的判定和性质,分情况作出图形,进行求解即可.
解:(1)当直线l与直线y=x+平行时,设直线l的解析式为y=x+b,
∵直线l经过点C(1,0),
∴0=+b,
∴b=,
∴直线l的解析式为y=x;
(2)①对于直线y=x+,令x=0得y=,令y=0得x=1,
∴A(0,),B(1,0),
∵C(1,0),
∴AC=,
②如图1中,作CE∥OA,
∴∠ACE=∠OAC,
∵tan∠OAC=,
∴∠OAC=30°,
∴∠ACE=30°,
∴α=30°;
(3)①如图2中,当α=15°时,
∵CE∥span>OD,
∴∠ODC=15°,
∵∠OAC=30°,
∴∠ACD=∠ADC=15°,
∴AD=AC=AB,
∴△ADB,△ADC是等腰三角形,
∵OD垂直平分BC,
∴DB=DC,
∴△DBC是等腰三角形;
②当α=60°时,易知∠DAC=∠DCA=30°,
∴DA=DC=DB,
∴△ABD、△ACD、△BCD均为等腰三角形;
③当α=105°时,易知∠ABD=∠ADB=∠ADC=∠ACD=75°,∠DBC=∠DCB=15°,
∴△ABD、△ACD、△BCD均为等腰三角形;
④当α=150°时,易知△BDC是等边三角形,
∴AB=BD=DC=AC,
∴△ABD、△ACD、△BCD均为等腰三角形,
综上所述:当α=15°或60°或105°或150°时,△ABD、△ACD、△BCD均为等腰三角形.
科目:初中数学 来源: 题型:
【题目】如图,菱形、矩形与正方形的形状有差异,我们将菱形、矩形与正方形的接近程度称为“接近度”.在研究“接近度”时,应保证相似图形的“接近度”相等.
(1)设菱形相邻两个内角的度数分别为和,将菱形的“接近度”定义为,于是,越小,菱形越接近于正方形.
①若菱形的一个内角为,则该菱形的“接近度”等于 ;
②当菱形的“接近度”等于 时,菱形是正方形.
(2)设矩形相邻两条边长分别是和(),将矩形的“接近度”定义为,于是越小,矩形越接近于正方形.
你认为这种说法是否合理?若不合理,给出矩形的“接近度”一个合理定义.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】下列各变量之间是反比例关系的是( )
A. 存入银行的利息和本金 B. 在耕地面积一定的情况下,人均占有耕地面积与人口数
C. 汽车行驶的时间与速度 D. 电线的长度与其质量
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图1,在平面直角坐标系,O为坐标原点,点A(﹣2,0),点B(0,2).
(1)直接写求∠BAO的度数;
(2)如图1,将△AOB绕点O顺时针得△A′OB′,当A′恰好落在AB边上时,设△AB′O的面积为S1,△BA′O的面积为S2,S1与S2有何关系?为什么?
(3)若将△AOB绕点O顺时针旋转到如图2所示的位置,S1与S2的关系发生变化了吗?证明你的判断.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】在△ABC中,∠BAC=120°,AD平分∠BAC,且AD=AB,若∠EDF=60°,其两边分别交边AB,AC于点E,F.
(1)求证:△ABD是等边三角形;
(2)求证:BE=AF.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】“足球运球”是中考体育必考项目之一.兰州市某学校为了解今年九年级学生足球运球的掌握情况,随机抽取部分九年级学生足球运球的测试成绩作为一个样本,按A,B,C,D四个等级进行统计,制成了如下不完整的统计图.(说明:A级:8分﹣10分,B级:7分﹣7.9分,C级:6分﹣6.9分,D级:1分﹣5.9分)
根据所给信息,解答以下问题:
(1)在扇形统计图中,C对应的扇形的圆心角是_____度;
(2)补全条形统计图;
(3)所抽取学生的足球运球测试成绩的中位数会落在_____等级;
(4)该校九年级有300名学生,请估计足球运球测试成绩达到A级的学生有多少人?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】“元旦”期间小明去永辉超市购物,恰逢永辉超市“满1400减99元”促销活动,小明准备提前购置一些年货和,已知和的单价总和是100到200之间的整数,小明粗略测算了一下发现自己所购年货总价为1305元,不能达到超市的促销活动金额. 于是小明又购买了 、各一件,这样就能参加超市的促销活动,最后刚好付款1305元. 小明经仔细计算发现前面粗略测算时把 和的单价看反了,那么小明实际总共买了______件年货.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在Δ中,已知点为中点,点在线段上以每秒的速度由点向点运动,同时点在线段上由点向点运动。当点的运动速度为每秒____时,能够在某一时刻使得Δ与Δ全等
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com