精英家教网 > 初中数学 > 题目详情

【题目】(本题6分)如图,已知△ABC∠C=Rt∠AC<BCDBC上一点,且到AB两点的距离相等.

1)用直尺和圆规,作出点D的位置(不写作法,保留作图痕迹);

2)连结AD,若∠B=37°,求∠CAD的度数.

【答案】1)点D的位置如图所示(DAB中垂线与BC的交点).(216°

【解析】

试题(1)根据到线段两个端点的距离相等的点在这条线段的垂直平分线上,作出AB的中垂线.(2)要求∠CAD的度数,只需求出∠CAD,而由(1)可知:∠CAD=2∠B

解:(1)点D的位置如图所示(DAB中垂线与BC的交点).

2Rt△ABC中,∠B=37°∴∠CAB=53°

∵AD=BD∴∠BAD=∠B=37°

∴∠CAD=53°—37°=16°

故答案为:(1)点D的位置如图所示(DAB中垂线与BC的交点);(216°

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】现计划把1240吨甲种货物和880吨乙种货物用一列火车运往某地,已知这列火车挂有AB两种不同规格的货车车厢共40节,使用A型车厢每节费用为6000元,B型车厢每节费用8000元.如果每节A型车厢最多可装35吨甲种货物和15吨乙种货物,每节B型车厢最多可装25吨甲种货物和35吨乙种货物;

1)那么共有哪几种安排车厢的方案?

2)在上述方案中,哪种方案运费最省、最少运费为多少元?

3)在(1)问下,若两种货物全部售出,且每吨货物售出获利200元,除去运费获

154000元,问:在这种情况下是按哪种方案安排车厢的.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】某商场计划购进两种新型节能台灯共盏,这两种台灯的进价、售价如表所示:

)若商场预计进货款为元,则这两种台灯各购进多少盏?

)若商场规定型台灯的进货数量不超过型台灯数量的倍,应怎样进货才能使商场在销售完这批台灯时获利最多?此时利润为多少元?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】综合与实践

问题背景:

我们知道,三角形的中位线平行于三角形的第三边,并且等于第三边的一半,如何证明三角形中位线定理呢?

已知:如图1,在中,分别是的中点.

求证:

问题中既要证明两条线段所在的直线平行,又要证明其中一条线段的长等于另一线段长的一半.所以可以用“倍长法”将延长一倍:延长,使得,连接这样只需证明,且.由于的中点,容易证明四边形、四边形是平行四边形,证明...

问题解决:

上述材料中“倍长法”体现的数学思想主要是_____ (填入选项前的字母代号即可)

A.数形结合思想 B.转化思想 C.分类讨论思想 D.方程思想

证明四边形是平行四边形的依据是

反思交流:

“智慧小组”在证明中位线定理时,在图1的基础上追加了如上辅助线作法:如图3,分别过点的垂线,垂足分别为,..

请你根据“智慧小组”添加的辅助线,证明三角形的中位线定理.

方法迁移:

如图4、四边形都是正方形,的中点.求证:

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】《九章算术》是中国古代数学专著,在数学上有其独到的成就,不仅最早提到了分数问题,也首先记录了“盈不足”等问题.如有一道阐述“盈不足”的问题,原文如下:今有共买鸡,人出九,盈十一;人出六,不足十六.问人数、鸡价各几何?译文为:现有若干人合伙出钱买鸡,如果每人出9文钱,就会多11文钱;如果每人出6文钱,又会缺16文钱.问买鸡的人数、鸡的价格各是多少?请解答上述问题.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在正方形网格图中建立一直角坐标系,一条圆弧经过网格点A、B、C,请在网格中进行下列操作:

(1)请在图中确定该圆弧所在圆心D点的位置,D点坐标为

(2)连接AD、CD,求D的半径及扇形DAC的圆心角度数;

(3)若扇形DAC是某一个圆锥的侧面展开图,求该圆锥的底面半径.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】ABC中,CDAB于点DDA=DC=4DB=2AFBC于点F,交DC于点E

1)求线段AE的长;

2)若点GAC的中点,点M是线段CD上一动点,连结GM,过点GGNGM交直线AB于点N,记CGM的面积为S1AGN的面积为S2.在点M的运动过程中,试探究:S1S2的数量关系

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,已知DCFP,∠1=∠2,∠FED=28,∠AGF=80,FH平分∠EFG

(1)说明:DCAB

(2)求∠PFH的度数.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】正方形ABCD内接于⊙O,如图所示,在劣弧上取一点E,连接DE、BE,过点D作DF∥BE交⊙O于点F,连接BF、AF,且AF与DE相交于点G,求证:

(1四边形EBFD是矩形;

(2DG=BE.

查看答案和解析>>

同步练习册答案