精英家教网 > 初中数学 > 题目详情
如图,AB是⊙O直径,CB是⊙O的切线,切点为B,OC平行于弦AD.
求证:DC是⊙O的切线.

【答案】分析:连接OD,只要证明CD⊥OD即可.
解答:证明:连接OD;
∵OA=OD,
∴∠A=∠ADO.
∵AD∥OC,
∴∠A=∠BOC,∠ADO=∠COD.
∴∠BOC=∠COD.
∵OB=OD,OC=OC,
∴△OBC≌△ODC.
∴∠OBC=∠ODC,又BC是⊙O的切线.
∴∠OBC=90°.
∴∠ODC=90°.
∴DC是⊙O的切线.
点评:本题考查切线的性质和判定及圆周角定理的综合运用.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

精英家教网如图,AB是⊙O直径,D为⊙O上一点,AT平分∠BAD交⊙O于点T,过T作AD的垂线交AD的延长线于点C.
(1)求证:CT为⊙O的切线;
(2)若⊙O半径为2,CT=
3
,求AD的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网如图,AB是⊙O直径,BC是弦,OD⊥BC于E交弧BC于D.根据中考改编
(1)请写出四个不同类型的正确结论;
(2)连接CD、DB设∠CDB=α,∠ABC=β,你认为α=β+90°这个结论正确吗?若正确请证明过程.若不正确请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网如图,AB是⊙O直径,C、D是⊙O上的两点,若∠BAC=20°,
AD
=
DC
,则∠DAC的度数是
 

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,AB是⊙O直径,OB=6,弦CD=10,则弦心距OP的长为(  )

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,AB是⊙O直径,弦CD交AB于E,∠AEC=45°,AB=2.设AE=x,CE2+DE2=y.下列图象中,能表示y与x的函数关系是的(  )

查看答案和解析>>

同步练习册答案